Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Integration of EGFR inhibitors with radiochemotherapy

An Erratum to this article was published on 26 October 2006

Abstract

Laboratory studies that led to the development of epidermal growth factor receptor (EGFR) inhibitors indicated that such inhibitors would be effective when given to patients with tumours that are driven by activated EGFR. However, initial clinical studies have shown modest responses to EGFR inhibitors when used alone, and it has not yet been possible to clearly identify which tumours will respond to this therapy. As a result, EGFR inhibitors are now used in combination with radiation therapy, chemotherapy and, more recently, with concurrent radiochemotherapy. In general, these clinical trials have been designed without much preclinical data. What do we need to know to make these combinations successful in the clinic?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic view of EGFR showing the crucial features required for kinase activity and key mutations identified in patients with non-small-cell lung carcinoma.
Figure 2: Potential mechanisms of synergy between EGFR inhibitors and radiation.
Figure 3: The effect of radiation and chemotherapy on EGFR signalling.
Figure 4: Proposed model for the integration of EGFR inhibitors with radiochemotherapy.

Similar content being viewed by others

References

  1. Steel, G. G. & Peckham, M. J. Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int. J. Radiat. Onc. Biol. Phys. 5, 85–91 (1979).

    Article  CAS  Google Scholar 

  2. Chou, T.-C. & Talalay, P. Quantitative analysis of dose-effective relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances Enzyme Res. 22, 27–55 (1984).

    Article  CAS  Google Scholar 

  3. Tannock, I. F. Treatment of cancer with radiation and drugs. J. Clin. Oncol. 14, 3156–3174 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Pignon, J. P. et al. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-Analysis of Chemotherapy on Head and Neck Cancer. Lancet 355, 949–955 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Dillman, R. O. et al. Improved survival in stage III non-small-cell lung cancer: seven-year follow-up of cancer and leukemia group B (CALGB) 8433 trial. J. Natl Cancer Inst. 88, 1210–1215 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Vokes, E. E. Optimal therapy for unresectable stage III non-small-cell lung cancer. J. Clin. Oncol. 23, 5853–5855 (2005).

    Article  PubMed  Google Scholar 

  7. O'Brien, S. G. et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 348, 994–1004 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumours. N. Engl. J. Med. 347, 472–480 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Kantarjian, H. et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med. 346, 645–652 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Gullick, W. J. et al. The structure and function of the epidermal growth factor receptor studied by using antisynthetic peptide antibodies. Proc. R. Soc. Lond. B 226, 127–134 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Mendelsohn, J. & Baselga, J. The EGF receptor family as targets for cancer therapy. Oncogene 19, 6550–6565 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Ward, W. H. et al. Epidermal growth factor receptor tyrosine kinase. Investigation of catalytic mechanism, structure-based searching and discovery of a potent inhibitor. Biochem. Pharmacol. 48, 659–666 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Levitzki, A. & Gazit, A. Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782–1788 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Goldstein, N. I., Prewett, M., Zuklys, K., Rockwell, P. & Mendelsohn, J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumour xenograft model. Clin. Cancer Res. 1, 1311–1318 (1995).

    CAS  PubMed  Google Scholar 

  16. Fry, D. W. et al. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc. Natl Acad. Sci. USA 95, 12022–12027 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ciardiello, F. et al. Antitumour effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin. Cancer Res. 6, 2053–2063 (2000).

    CAS  PubMed  Google Scholar 

  18. Stamos, J., Sliwkowski, M. X. & Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Mendelsohn, J. & Fan, Z. Epidermal growth factor receptor family and chemosensitization. J. Natl Cancer Inst. 89, 341–343 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Milas, L. et al. In vivo enhancement of tumour radioresponse by C225 antiepidermal growth factor receptor antibody. Clin. Cancer Res. 6, 701–708 (2000).

    CAS  PubMed  Google Scholar 

  21. Harari, P. M. & Huang, S. M. Head and neck cancer as a clinical model for molecular targeting of therapy: combining EGFR blockade with radiation. Int. J. Rad. Oncol. Biol. Phys. 49, 427–433 (2001).

    Article  CAS  Google Scholar 

  22. Herbst, R. S., Kim, E. S. & Harari, P. M. IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody, for treatment of head and neck cancer. Expert Opin. Biol. Ther. 1, 719–732 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Solomon, B. et al. EGFR blockade with ZD1839 ('Iressa') potentiates the antitumour effects of single and multiple fractions of ionizing radiation in human A431 squamous cell carcinoma. Epidermal growth factor receptor. Int. J. Radiat. Oncol. Biol. Phys. 55, 713–723 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Milano, G. & Magne, N. Anti-EGFR and radiotherapy. Cancer Radiother. 8, 380–382 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Nyati, M. K. et al. Radiosensitization by pan ErbB inhibitor CI-1033 in vitro and in vivo. Clin. Cancer Res. 10, 691–700 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Deutsch, E., Kaliski, A., Maggiorella, L. & Bourhis, J. New strategies to interfere with radiation response: 'biomodulation' of radiation therapy. Cancer Radiother. 9, 69–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  Google Scholar 

  28. Parra, H. S. et al. Analysis of epidermal growth factor receptor expression as a predictive factor for response to gefitinib ('Iressa', ZD1839) in non-small-cell lung cancer. Br. J. Cancer 91, 208–212 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Han, S. W. et al. Epidermal growth factor receptor (EGFR) downstream molecules as response predictive markers for gefitinib (Iressa, ZD1839) in chemotherapy-resistant non-small cell lung cancer. Int. J. Cancer 113, 109–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Cappuzzo, F. et al. Gefitinib in pretreated non-small-cell lung cancer (NSCLC): analysis of efficacy and correlation with HER2 and epidermal growth factor receptor expression in locally advanced or metastatic NSCLC. J. Clin. Oncol. 21, 2658–2663 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Cappuzzo, F. et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J. Natl Cancer Inst. 97, 643–655 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Hirsch, F. R. et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. J. Clin. Oncol. 23, 6838–6845 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Takano, T. et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J. Clin. Oncol. 23, 6829–6837 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Johnson, B. E. & Janne, P. A. Selecting patients for epidermal growth factor receptor inhibitor treatment: a FISH story or a tale of mutations? J. Clin. Oncol. 23, 6813–6816 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Garcia de Palazzo, I. E. et al. Expression of mutated epidermal growth factor receptor by non-small cell lung carcinomas. Cancer Res. 53, 3217–3220 (1993).

    CAS  PubMed  Google Scholar 

  36. Moscatello, D. K. et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumours. Cancer Res. 55, 5536–5539 (1995).

    CAS  PubMed  Google Scholar 

  37. Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 353, 2012–2024 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Janne, P. A., Engelman, J. A. & Johnson, B. E. Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumour biology. J. Clin. Oncol. 23, 3227–3234 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Dowell, J. E. Epidermal growth factor receptor mutations in non-small cell lung cancer: a basic science discovery with immediate clinical impact. Am. J. Med. Sci. 331, 139–149 (2006).

    Article  PubMed  Google Scholar 

  42. Kwok, T. T. & Sutherland, R. M. Enhancement of sensitivity of human squamous carcinoma cells to radiation by epidermal growth factor. J. Natl Cancer Inst. 81, 1020–1024 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Bonner, J. A., Maihle, N. J., Folven, B. R., Christianson, T. J. & Spain, K. The interaction of epidermal growth factor and radiation in human head and neck squamous cell carcinoma cell lines with vastly different radiosensitivities. Int. J. Radiat. Oncol. Biol. Phys. 29, 243–247 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Balaban, N. et al. The effect of ionizing radiation on signal transduction: Antibodies to EGF receptor sensitize A431 cells to radiation. Biochim. Biophys. Acta 1314, 147–156 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Sheridan, M. T., O'Dwyer, T., Seymour, C. B. & Mothersill, C. E. Potential indicators of radiosensitivity in squamous cell carcinoma of the head and neck. Radiat. Oncol. Investig. 5, 180–186 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Akimoto, T. et al. Inverse relationship between epidermal growth factor receptor expression and radiocurability of murine carcinomas. Clin. Cancer Res. 5, 2884–2890 (1999).

    CAS  PubMed  Google Scholar 

  47. Milas, L., Fan, Z., Andratschke, N. H. & Ang, K. K. Epidermal growth factor receptor and tumour response to radiation: in vivo preclinical studies. Int. J. Rad. Oncol. Biol. Phys. 58, 966–971 (2004).

    Article  CAS  Google Scholar 

  48. Ang, K. K. et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 62, 7350–7356 (2002).

    CAS  PubMed  Google Scholar 

  49. Peng, D. et al. Anti-epidermal growth factor receptor monoclonal antibody 225 upregulates p27KIP1 and induces G1 arrest in prostatic cancer cell line DU145. Cancer Res. 56, 3666–3669 (1996).

    CAS  PubMed  Google Scholar 

  50. Di Gennaro, E. et al. Critical role of both p27KIP1 and p21CIP1/WAF1 in the antiproliferative effect of ZD1839 ('Iressa'), an epidermal growth factor receptor tyrosine kinase inhibitor, in head and neck squamous carcinoma cells. J. Cell Physiol. 195, 139–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Schmidt-Ullrich, R. K., Valerie, K., Fogleman, P. B. & Walters, J. Radiation-induced autophosphorylation of epidermal growth factor receptor in human malignant mammary and squamous epithelial cells. Radiat. Res. 145, 81–85 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt-Ullrich, R. K. et al. Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 15, 1191–1197 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Dent, P. et al. Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol. Biol. Cell 10, 2493–2506 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Contessa, J. N. et al. Ionizing radiation activates Erb-B receptor dependent Akt and p70 S6 kinase signalling in carcinoma cells. Oncogene 21, 4032–4041 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Dittmann, K. et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J. Biol. Chem. 280, 31182–31189 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Bowers, G. et al. The relative role of ErbB1–4 receptor tyrosine kinases in radiation signal transduction responses of human carcinoma cells. Oncogene 20, 1388–1397 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Hagan, M., Yacoub, A. & Dent, P. Ionizing radiation causes a dose-dependent release of transforming growth factor alpha in vitro from irradiated xenografts and during palliative treatment of hormone-refractory prostate carcinoma. Clin. Cancer Res. 10, 5724–5731 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Huang, S. M., Bock, J. M. & Harari, P. M. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res. 59, 1935–1940 (1999).

    CAS  PubMed  Google Scholar 

  59. Rao, G. S., Murray, S. & Ethier, S. P. Radiosensitization of human breast cancer cells by a novel ErbB family receptor tyrosine kinase inhibitor. Int. J. Rad. Oncol. Biol. Phys. 48, 1519–1528 (2000).

    Article  CAS  Google Scholar 

  60. Bonner, J. A. et al. Enhanced apoptosis with combination C225/radiation treatment serves as the impetus for clinical investigation in head and neck cancers. J. Clin. Oncol. 18, 47S–53S (2000).

    CAS  PubMed  Google Scholar 

  61. Bianco, C. et al. Antitumour activity of combined treatment of human cancer cells with ionizing radiation and anti-epidermal growth factor receptor monoclonal antibody C225 plus type I protein kinase A antisense oligonucleotide. Clin. Cancer Res. 6, 4343–4350 (2000).

    CAS  PubMed  Google Scholar 

  62. Shintani, S. et al. Enhancement of tumour radioresponse by combined treatment with gefitinib (Iressa, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, is accompanied by inhibition of DNA damage repair and cell growth in oral cancer. Int. J. Cancer 107, 1030–1037 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Saleh, M. N. et al. Combined modality therapy of A431 human epidermoid cancer using anti-EGFr antibody C225 and radiation. Cancer Biother. Radiopharm. 14, 451–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Huang, S. M. & Harari, P. M. Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumour angiogenesis. Clin. Cancer Res. 6, 2166–2174 (2000).

    CAS  PubMed  Google Scholar 

  65. Harari, P. M. & Huang, S. M. Modulation of molecular targets to enhance radiation. Clin. Cancer Res. 6, 323–325 (2000).

    CAS  PubMed  Google Scholar 

  66. Li, J., Lin, M. L., Wiepz, G. J., Guadarrama, A. G. & Bertics, P. J. Integrin-mediated migration of murine B82L fibroblasts is dependent on the expression of an intact epidermal growth factor receptor. J. Biol. Chem. 274, 11209–11219 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Raben, D., Helfrich, B. & Bunn, P. A. Targeted therapies for non-small-cell lung cancer: biology, rationale, and preclinical results from a radiation oncology perspective. Int. J. Rad. Oncol. Biol. Phys. 59, 27–38 (2004).

    Article  CAS  Google Scholar 

  68. Robert, F. et al. Phase I study of anti--epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J. Clin. Oncol. 19, 3234–3243 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Matar, P. et al. Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting. Clin. Cancer Res. 10, 6487–6501 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Huang, S., Armstrong, E. A., Benavente, S., Chinnaiyan, P. & Harari, P. M. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res. 64, 5355–5362 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Baselga, J. et al. Antitumour effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J. Natl Cancer Inst. 85, 1327–1333 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Fan, Z., Baselga, J., Masui, H. & Mendelsohn, J. Antitumour effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res. 53, 4637–4642 (1993).

    CAS  PubMed  Google Scholar 

  73. Sirotnak, F. M., Zakowski, M. F., Miller, V. A., Scher, H. I. & Kris, M. G. Efficacy of cytotoxic agents against human tumour xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin. Cancer Res. 6, 4885–4892 (2000).

    CAS  PubMed  Google Scholar 

  74. Busse, D. et al. Reversible G(1) arrest induced by inhibition of the epidermal growth factor receptor tyrosine kinase requires up-regulation of p27 (KIP1) independent of MAPK activity. J. Biol.Chem. 275, 6987–6995 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Wu, X. et al. Involvement of p27KIP1 in G1 arrest mediated by an anti-epidermal growth factor receptor monoclonal antibody. Oncogene 12, 1397–1403 (1996).

    CAS  PubMed  Google Scholar 

  76. Morelli, M. P. et al. Sequence-dependent antiproliferative effects of cytotoxic drugs and epidermal growth factor receptor inhibitors. Ann. Oncol. 16 (Suppl. 4), iv61–iv68 (2005).

    Article  PubMed  Google Scholar 

  77. Chun, P. Y. et al. Synergistic effects of gemcitabine and gefitinib in the treatment of head and neck carcinoma. Cancer Res. 66, 981–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Azzariti, A., Xu, J. M., Porcelli, L. & Paradiso, A. The schedule-dependent enhanced cytotoxic activity of 7-ethyl-10-hydroxy-camptothecin (SN-38) in combination with Gefitinib (Iressa, ZD1839). Biochem. Pharmacol. 68, 135–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Xu, J. M. et al. Characterization of sequence-dependent synergy between ZD1839 ('Iressa') and oxaliplatin. Biochem. Pharmacol. 66, 551–563 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Benhar, M., Engelberg, D. & Levitzki, A. Cisplatin-induced activation of the EGF receptor. Oncogene 21, 8723–8731 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Van Schaeybroeck, S. et al. Epidermal growth factor receptor activity determines response of colorectal cancer cells to gefitinib alone and in combination with chemotherapy. Clin. Cancer Res. 11, 7480–7489 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Sumitomo, M. et al. ZD1839 modulates paclitaxel response in renal cancer by blocking paclitaxel-induced activation of the epidermal growth factor receptor-extracellular signal-regulated kinase pathway. Clin. Cancer Res. 10, 794–801 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Abdelmohsen, K. et al. Doxorubicin induces EGF receptor-dependent downregulation of gap junctional intercellular communication in rat liver epithelial cells. Biol. Chem. 386, 217–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Ullrich, A. & Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212 (1990).

    Article  CAS  PubMed  Google Scholar 

  85. Feng, F.Y. et al. EGFR degradation: a novel mechanism of gemcitabine-induced cell death in head and neck cancer cell lines. In 14th SPORE investigators' workshop 154 (Baltimore, 2006).

    Google Scholar 

  86. Friedmann, B., Caplin, M., Hartley, J. A. & Hochhauser, D. Modulation of DNA repair in vitro after treatment with chemotherapeutic agents by the epidermal growth factor receptor inhibitor gefitinib (ZD1839). Clin. Cancer Res. 10, 6476–6486 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Friedmann, B. J. et al. Interaction of the epidermal growth factor receptor and the DNA-dependent protein kinase pathway following gefitinib treatment. Mol. Cancer Ther. 5, 209–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Magne, N. et al. Molecular mechanisms underlying the interaction between ZD1839 ('Iressa') and cisplatin/5-fluorouracil. Br. J. Cancer 89, 585–592 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Giaccone, G. et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial — INTACT 1. J. Clin. Oncol. 22, 777–784 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Herbst, R. S. et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial — INTACT 2. J. Clin. Oncol. 22, 785–794 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Herbst, R. S. et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J. Clin. Oncol. 23, 5892–5899 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Burtness, B., Goldwasser, M. A., Flood, W., Mattar, B. & Forastiere, A. A. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J. Clin. Oncol. 23, 8646–8654 (2005).

    Article  PubMed  Google Scholar 

  93. Moore, M. J. Brief communication: a new combination in the treatment of advanced pancreatic cancer. Semin. Oncol. 32, 5–6 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Moore, M. J. et al. Erlotinib plus gemcitabine compared to gemcitabine alone in patients with advanced pancreatic cancer. A phase III trial of the National Cancer Institute of Canada Clinical Trials Group [NCIC-CTG]. J. Clin. Oncol. 23, 1S–1S (2005).

    Article  Google Scholar 

  95. Tsao, M. S. et al. Erlotinib in lung cancer- molecular and clinical predictors of outcome. N. Engl. J. Med. 353, 133–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Chung, K. Y. et al. Cetuximab shows activity in colourectal cancer patients with tumours that do not express the epidermal growth factor receptor by immunohistochemistry. J. Clin. Oncol. 23, 1803–1810 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Elie, C. et al. Lack of relationship between EGFR-1 immunohistochemical expression and prognosis in a multicentre clinical trial of 93 patients with advanced primary ovarian epithelial cancer (GINECO group). Br. J. Cancer 91, 470–475 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Segaert, S. et al. The management of skin reactions in cancer patients receiving epidermal growth factor receptor targeted therapies. J. Dtsch Dermatol. Ges. 3, 599–606 (2005).

    Article  PubMed  Google Scholar 

  99. Baselga, J. Combining the anti-EGFR agent gefitinib with chemotherapy in non-small-cell lung cancer: How do we go from INTACT to impact? J. Clin. Oncol. 22, 759–761 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Tan, A. R. et al. Evaluation of biologic end points and pharmacokinetics in patients with metastatic breast cancer after treatment with erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor. J. Clin. Oncol. 22, 3080–3090 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Laux, I., Jain, A., Singh, S. & Agus, D. B. Epidermal growth factor receptor dimerization status determines skin toxicity to HER-kinase targeted therapies. Br. J. Cancer 94, 85–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Bowman, T., Garcia, R., Turkson, J. & Jove, R. STATs in oncogenesis. Oncogene 19, 2474–2488 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y. & Mills, G. B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Rev. Drug Discov. 4, 988–1004 (2005).

    Article  CAS  Google Scholar 

  105. Nishinaka, T. & Yabe-Nishimura, C. EGF receptor-ERK pathway is the major signalling pathway that mediates upregulation of aldose reductase expression under oxidative stress. Free Radic. Biol. Med. 31, 205–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Sebolt-Leopold, J. S. & Herrera, R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nature Rev. Cancer 4, 937–947 (2004).

    Article  CAS  Google Scholar 

  107. Oliva, J. L., Griner, E. M. & Kazanietz, M. G. PKC isozymes and diacylglycerol-regulated proteins as effectors of growth factor receptors. Growth Factors 23, 245–252 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Russo, M. W., Lukas, T. J., Cohen, S. & Staros, J. V. Identification of residues in the nucleotide binding site of the epidermal growth factor receptor/kinase. J. Biol. Chem. 260, 5205–5208 (1985).

    CAS  PubMed  Google Scholar 

  110. Gullick, W. J., Downward, J., Foulkes, J. G. & Waterfield, M. D. Antibodies to the ATP-binding site of the human epidermal growth factor (EGF) receptor as specific inhibitors of EGF-stimulated protein-tyrosine kinase activity. Eur. J. Biochem. 158, 245–253 (1986).

    Article  CAS  PubMed  Google Scholar 

  111. Biscardi, J. S. et al. c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J. Biol. Chem. 274, 8335–8343 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Grovdal, L. M., Stang, E., Sorkin, A. & Madshus, I. H. Direct interaction of Cbl with pTyr 1045 of the EGF receptor (EGFR) is required to sort the EGFR to lysosomes for degradation. Exp. Cell Res. 300, 388–395 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Buday, L. & Downward, J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73, 611–620 (1993).

    Article  CAS  PubMed  Google Scholar 

  114. Keilhack, H. et al. Phosphotyrosine 1173 mediates binding of the protein-tyrosine phosphatase SHP-1 to the epidermal growth factor receptor and attenuation of receptor signalling. J. Biol. Chem. 273, 24839–24846 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Choong, N. W. et al. Gefitinib response of erlotinib-refractory lung cancer involving meninges--role of EGFR mutation. Nature Clin. Pract. Oncol. 3, 50–57 (2006).

    Article  CAS  Google Scholar 

  117. Bell, D. W. et al. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nature Genet. 37, 1315–1316 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Dittmann, K., Mayer, C. & Rodemann, H. P. Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiother. Oncol. 76, 157–161 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Boerner, J. L., Biscardi, J. S., Silva, C. M. & Parsons, S. J. Transactivating agonists of the EGF receptor require Tyr 845 phosphorylation for induction of DNA synthesis. Mol. Carcinog. 44, 262–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Boerner, J. L., Demory, M. L., Silva, C. & Parsons, S. J. Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol. Cell Biol. 24, 7059–7071 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Goldberg, R. M. Cetuximab. Nature Rev. Drug Discov. Suppl., S10–S11 (2005).

  122. Kies, M. S. & Harari, P. M. Cetuximab (Imclone/Merck/Bristol-Myers Squibb). Curr. Opin. Investig. Drugs 3, 1092–1100 (2002).

    CAS  PubMed  Google Scholar 

  123. Rowinsky, E. K. et al. Safety, pharmacokinetics, and activity of ABX-EGF, a fully human anti-epidermal growth factor receptor monoclonal antibody in patients with metastatic renal cell cancer. J. Clin. Oncol. 22, 3003–3015 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Yang, X. D., Jia, X. C., Corvalan, J. R., Wang, P. & Davis, C. G. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit. Rev. Oncol. Hematol. 38, 17–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Ranson, M. Technology evaluation: ABX-EGF, Abgenix/Amgen. Curr. Opin. Mol. Ther. 5, 541–546 (2003).

    CAS  PubMed  Google Scholar 

  126. Vanhoefer, U. et al. Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumours that express the epidermal growth factor receptor. J. Clin. Oncol. 22, 175–184 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Kollmannsberger, C. et al. A phase I study of the humanized monoclonal anti-epidermal growth factor receptor (EGFR) antibody EMD 72000 (matuzumab) in combination with paclitaxel in patients with EGFR-positive advanced non-small-cell lung cancer (NSCLC). Ann. Oncol. (2006).

  128. Modjtahedi, H. et al. Phase 1 trial and tumour localization of the anti-EGFR monoclonal antibody ICR62 in head and neck or lung cancer. Br. J. Cancer 73, 228–235 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nakagawa, K. et al. Phase I pharmacokinetic trial of the selective oral epidermal growth factor receptor tyrosine kinase inhibitor gefitinib ('Iressa', ZD1839) in Japanese patients with solid malignant tumours. Ann. Oncol. 14, 922–930 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Cohen, M. H., Johnson, J. R., Chen, Y. F., Sridhara, R. & Pazdur, R. FDA drug approval summary: erlotinib (Tarceva) tablets. Oncologist 10, 461–466 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Hoekstra, R. et al. Phase I and pharmacologic study of PKI166, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. Clin. Cancer Res. 11, 6908–6915 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Nemunaitis, J. et al. Phase 1 clinical and pharmacokinetics evaluation of oral CI-1033 in patients with refractory cancer. Clin. Cancer Res. 11, 3846–3853 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Calvo, E. et al. Administration of CI-1033, an irreversible pan-erbB tyrosine kinase inhibitor, is feasible on a 7-day on, 7-day off schedule: a phase I pharmacokinetic and food effect study. Clin. Cancer Res. 10, 7112–7120 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Campos, S. et al. Multicenter, randomized phase II trial of oral CI-1033 for previously treated advanced ovarian cancer. J. Clin. Oncol. 23, 5597–5604 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Erlichman, C. et al. EKB-569, an irreversible inhibitor of the epidermal growth factor recepton: Phase 1 trial results in patients with advanced solid tumours. Eur. J. Cancer 38, S64–S64 (2002).

    Google Scholar 

  136. Yoshimura, N. et al. EKB-569, a new irreversible epidermal growth factor receptor tyrosine kinase inhibitor, with clinical activity in patients with non-small cell lung cancer with acquired resistance to gefitinib. Lung Cancer 51, 363–368 (2006).

    Article  PubMed  Google Scholar 

  137. Burris, H. A., et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J. Clin. Oncol. 23, 5305–5313 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by US National Cancer Institute grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore S. Lawrence.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

anal cancer

breast cancer

CML

head and neck cancer

lung cancer

stomach cancer

rectal cancer

FURTHER INFORMATION

University of Michigan Department of Radiation Oncology hompage

Clinical trials web sete

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyati, M., Morgan, M., Feng, F. et al. Integration of EGFR inhibitors with radiochemotherapy. Nat Rev Cancer 6, 876–885 (2006). https://doi.org/10.1038/nrc1953

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1953

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing