Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The NCI60 human tumour cell line anticancer drug screen

Abstract

The US National Cancer Institute (NCI) 60 human tumour cell line anticancer drug screen (NCI60) was developed in the late 1980s as an in vitro drug-discovery tool intended to supplant the use of transplantable animal tumours in anticancer drug screening. This screening model was rapidly recognized as a rich source of information about the mechanisms of growth inhibition and tumour-cell kill. Recently, its role has changed to that of a service screen supporting the cancer research community. Here I review the development, use and productivity of the screen, highlighting several outcomes that have contributed to advances in cancer chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The halichondrin B team.
Figure 2: Sample throughput of the NCI60.
Figure 3: Illustration of NCI60 data for bortezomib (Velcade, PS-341, NSC 681239).
Figure 4: Self-organizing map (SOM) projections of bortezomib and structurally related boronic acids.
Figure 5: Self-organizing map (SOM) projections of hypoxia inducible factor 1α (HIF1α) high-throughput screen active compounds.

References

  1. Boyd, M. R. in Anticancer Drug Development Guide; Preclinical Screening, Clinical Trials, and Approval (eds Teicher, B. A. &Andrews, P. A.) 41–62 (Humana press, Totowa, USa, 2004).

    Google Scholar 

  2. Nelson-Rees, W. A., Flandermeyer, R. R. & Hawthorne, P. K. Banded marker chromosomes as indicators of intraspecies cellular contamination. Science 184, 1093–1096 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Nelson-Rees, W. A. & Flandermeyer, R. R. Inter and intraspecies contamination of human breast tumor cell lines HBC and BrCa5 and other cell cultures. Science 195, 1343–1344 (1977).

    Article  CAS  PubMed  Google Scholar 

  4. Nelson-Rees, W. A. The identification and monitoring of cell line specificity. Prog. Clin. Biol. Res. 26, 25–79 (1978).

    CAS  PubMed  Google Scholar 

  5. Shoemaker, R. H. et al. Use of the KB Cell Line for In vitro Cytotoxicity Assays. Cancer Treat. Rep. 67, 97 (1983).

  6. Shoemaker, R. H. et al. Development of human tumor cell line panels for use in disease-oriented drug screening. Prog. Clin. Biol. Res. 276, 265–286 (1988).

    CAS  PubMed  Google Scholar 

  7. Gazdar, A. F. et al. Establishment of continuous, clonable cultures of small-cell carcinoma of lung which have amine precursor uptake and decarboxylation cell properties. Cancer Res. 40, 3502–3507 (1980).

    CAS  PubMed  Google Scholar 

  8. Gazdar, A. F., Carney, D. N. & Minna, J. D. The biology of non-small cell lung cancer. Semin. Oncol. 10, 3–19 (1983).

    CAS  PubMed  Google Scholar 

  9. Gazdar, A. F & Minna, J. D. Cell lines as an investigational tool for the study of biology of small cell lung cancer. Eur. J. Cancer Clin. Oncol. 8, 909–911 (1986).

    Article  Google Scholar 

  10. Gazdar, A. F., Carney, D. N., Nau, M. M. & Minna, J. D. Characterization of variant subclasses of cell lines derived from small cell lung cancer having distinctive biochemical, morphological, and growth properties. Cancer Res. 45, 2924–2930 (1985).

    CAS  PubMed  Google Scholar 

  11. Phelps, R. M. et al. NCI-Navy Medical Oncology Branch cell line data base. J. Cell Biochem. Suppl. 24, 32–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Pettengill O. S. et al. Isolation and growth characteristics of continuous cell lines from small-cell carcinoma of the lung. Cancer 45 906–918 (1980)

    Article  CAS  PubMed  Google Scholar 

  13. Stinson, S. F. et al. Morphological and immunocytochemical characteristics of human tumor cell lines for use in a disease-oriented anticancer drug screen. Anticancer Res. 12, 1035–1053 (1992).

    CAS  PubMed  Google Scholar 

  14. Scherf, U. et al. A cDNA microarray gene expression database for the molecular pharmacology of cancer. Nature Genet. 24, 236–244 (2004).

    Article  CAS  Google Scholar 

  15. Ross, D. T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Mol. Pathol. 55, 294–299 (2002).

    Article  Google Scholar 

  16. Garraway, L. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Scudiero, D. A., Monks, A. & Sausville, E. A. Cell line designation change: multidrug-resistant cell line in the NCI anticancer screen. J. Natl Cancer Inst. 90, 862 (1998).

  18. Roschke, A. V. et al. Karyotypic complexity of the NCI-60 drug-screening panel. Cancer Res. 63, 8634–8647 (2003).

    CAS  PubMed  Google Scholar 

  19. Shoemaker, R. H. et al. in Human Tumor Xenografts in Anticancer Drug Development. (eds Wynograd, B., Peckham, M. G. & Pinedo, H. M.) 115–120 (European School of Oncology Monograph, Milan,1988).

    Book  Google Scholar 

  20. Gazdar, A. Shoemaker, R. H., Mayo, J. Donovan, P. & Fine, D. in Immune Deficient Animals in Biomedical Research (eds Rygaard, J., Brunner, N., Graem, N. & Sprang-Thomsen, M.) 277–280 (Karger, Basal, 1987).

    Google Scholar 

  21. Shoemaker, R. H. et al. Practical spontaneous metastasis model for in vivo therapeutic studies using a human melanoma. Cancer Res. 51, 2837–2841 (1991).

    CAS  PubMed  Google Scholar 

  22. Shoemaker, R. H., Smythe, A. M., Lin, W., Baslachak, M. S. & Boyd, M. R. Evaluation of metastatic human tumor burden and response to therapy in a nude mouse xenograft model using a molecular probe for repetitive human DNA sequences. Cancer Res. 52, 2791–2796 (1992).

    CAS  PubMed  Google Scholar 

  23. Arguello, F. et al. Two serologic markers to monitor the engraftment, growth and treatment response of human leukemias in SCID mice. Blood 87, 4325–4332 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Hollingshead, M. et al. A potential role for imaging technology in anticancer efficacy evaluations. Eur. J. Cancer 40, 890–898 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. McLemore, T. L. et al. Novel intrapulmonary model for orthotopic propagation of human lung cancers in athymic nude mice. Cancer Res. 47, 5132–5140 (1987).

    CAS  PubMed  Google Scholar 

  26. Mosmann, T. Rapid colormetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Alley, M. C. et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48, 589–601 (1988).

    CAS  PubMed  Google Scholar 

  28. Paull, K. D. et al. The synthesis of XTT: a new tetrazolium reagent bioreducible to a water soluable formazan. J. Heterocycl. Chem. 25, 911–914 (1988).

    Article  CAS  Google Scholar 

  29. Scudiero, D. A. et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827–4833 (1988).

    CAS  PubMed  Google Scholar 

  30. Vistica, D. T. et al. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res. 51, 2515–2520 (1991).

    CAS  PubMed  Google Scholar 

  31. Finlay G. J., Baguley B. C. & Wilson W. R. A semiautomated microculture method for investigating growth inhibitory effects of cytotoxic compounds on exponentially growing carcinoma cells. Anal. Biochem. 139, 272–277 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Skehan, P. et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl Cancer Inst. 82, 1107–1112 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Rubinstein, L. V. et al. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl Cancer Inst. 2, 1113–1118 (1990).

    Article  Google Scholar 

  34. Monks, A. et al. Feasibility of a high-hlux anticancer drug screen utilizing a diverse panel of cultured human tumor cell lines. J. Natl Cancer Inst. 83, 757–766 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Weislow, O. S. et al. New soluble-formazan assay for HIV-1 cytopathic effects: application to high-flux screening of synthetic and natural products for AIDS-antiviral activity. J. Natl Cancer Inst. 81, 577–586 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Sausville, E. A. & Shoemaker, R. H. Role of the National Cancer Institute in acquired immunodeficiency syndrome-related drug discovery. J. Natl Cancer Inst. 28, 55–57 (2001).

    Google Scholar 

  37. Paull, K. D. et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J. Natl Cancer Inst. 81, 1088–1092 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Boyd, M. R. & Paull, K. D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res. 34, 91–109 (1995).

    Article  CAS  Google Scholar 

  39. Wu, L. et al. Multidrug-resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Cancer Res. 52, 3029–3034 (1991).

    Google Scholar 

  40. Lee, J. S. et al. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol. 46, 627–638 (1994).

    CAS  PubMed  Google Scholar 

  41. Alvarez, M. et al. Generation of a drug resistance profile by quantitation of mdr-1/P-glycoprotein in the cell lines of the National Cancer Institute Anticancer Drug Screen. J. Clin. Invest. 95, 2205–2214 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Izquierdo, M. A. et al. Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines. Int. J. Cancer. 65, 230–237 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Acton, E. M. et al. Anticancer specificity of some ellipticinium salts against human brain tumors in vitro. J. Med. Chem. 8, 2185–2189 (1994).

    Article  Google Scholar 

  44. Vistica, D. T., Kenney, S., Hursey, M. & Boyd, M. R. Role of membrane potential in the accumulation of quaternized ellipticines by human tumor cell lines. J. Pharmacol. Exp. Ther. 279, 1018–1025 (1996).

    CAS  PubMed  Google Scholar 

  45. Shoemaker, R. H., Balaschak, M. S., Alexander, M. R. & Boyd, M. R. Therapeutic activity of 9-chloro-2-methylellipticinium acetate in an orthotopic model of human brain cancer. Oncol. Rep. 2, 663–667 (1995).

    CAS  PubMed  Google Scholar 

  46. Arguello, F. et al. Preclinical evaluation of 9-chloro-2-methylellipticinium acetate alone and in combination with conventional anticancer drugs for the treatment of human brain tumor xenografts. J. Cancer Res. Clin. Oncol. 124, 19–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Monks, A., Scudiero, D. A., Johnson, G. S., Paull, K. D. & Sausville, E. A. The NCI anti-cancer drug screen: a smart screen to identify effectors of novel targets. Anticancer Drug Des. 12, 533–541 (1997).

    CAS  PubMed  Google Scholar 

  48. Bai, R. L. et al. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J. Biol. Chem. 266, 15882–15889 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Fodstad, O., Breistol, K., Pettit, G. R., Shoemaker, R. H. & Boyd, M. R. Comparative antitumor activities of halichondrins and vinblastine against human tumor xenografts. J. Exp. Ther. Oncol. 1, 119–125 (1996).

    CAS  PubMed  Google Scholar 

  50. Towle, M. J. et al. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res. 61, 1013–1021 (2001).

    CAS  PubMed  Google Scholar 

  51. Seletsky, B. M. et al. Structurally simplified macrolactone analogues of halichondrin B. Bioorg. Med. Chem. Lett. 14, 5547–5550 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Boyd, M. R., Shoemaker, R. H., Cragg, G. M. & Suffness, M. in Pharmaceuticals and the Sea (eds Jefford, C. W., Rinehart, K. L. & Shield, L. S.) 115–120 (European School of Oncology Monograph, Milan, 1998).

    Google Scholar 

  53. Cragg, G. M. et al. Ethnobotany and drug discovery: the experience of the US National Cancer Institute. Ciba Found. Symp. 185, 178–190 (1994).

    CAS  PubMed  Google Scholar 

  54. Cruz-Monserrate, Z. et al. Diazonamide A and a synthetic structural analog: disruptive effects on mitosis and cellular microtubules and analysis of their interactions with tubulin. Mol. Pharmacol. 63, 1273–1280 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Williams D. E. et al. Spirastrellolide A: revised structure, progress toward the relative configuration, and inhibition of protein phosphatase 2A. Org. Lett. 6, 2607–2610 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Houssen, W. E. & Jaspars, M. 4-Hydroxybenzoyl derivative from the aqueous extract of the hydroid Campanularia sp. J. Nat. Prod. 68, 453–455 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Cao, S., Foster, C., Lazo, J. S. & Kingston, D. G. Four diterpenoid inhibitors of Cdc25B phosphatase from a marine anemone. Bioorg. Med. Chem. 13, 5830–5834 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Schroeder, F. C., Kau, T. R., Silver, P. A. & Clardy, J. The psammaplysenes, specific inhibitors of FOXO1a nuclear export. J. Nat. Prod. 68, 574–576 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Segraves, N. L. & Crews, P. Investigation of brominated tryptophan alkaloids from two thorectidae sponges: Thorectandra and Smenospongia. J. Nat. Prod. 68, 1484–1488 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Bokesch, H. R. et al. Alertenone, a dimer of suberosenone from Alertigorgia sp. J. Nat. Prod. 62, 633–635 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Fuller, R. W. et al. Isolation and structure/activity features of halomon-related antitumor monoterpenes from the red alga Portieria hornemannii. J. Med. Chem. 37, 4407–4411 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Galinis, D. L., McKee, T. C., Pannell, L. K., Cardellina, J. H. II, & Boyd, M. R. Lobatamides A and B, novel cytotoxic macrolides from the tunicate Aplidium lobatum. J. Org. Chem. 62, 8968–8969 (1997).

    Article  CAS  Google Scholar 

  63. Erickson, K. L., Beutler, J. A., Cardellina, J. H. II & Boyd, M. R. Salicylihalamides A and B, Novel Cytotoxic Macrolides from the Marine Sponge Haliclona sp. J. Org. Chem. 62, 8188–8192 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Boyd, M. R. et al. Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type (H+)-atpases. J. Pharmacol. Exp. Ther. 297, 114–120 (2001).

    CAS  PubMed  Google Scholar 

  65. Xie, X. S. et al. Salicylihalamide A inhibits the V0 sector of the V-ATPase through a mechanism distinct from bafilomycin A1. J. Biol. Chem. 279, 19755–19763 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Hollingshead, M. G. et al. In vivo cultivation of tumor cells in hollow fibers. Life Sci. 57, 131–141 (1999).

    Article  Google Scholar 

  67. Weinstein, J. N. et al. Neural computing in cancer drug development: predicting mechanism of action. Science 258, 447–451 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. van Osdol, W. W., Myers, T. G., Paull, K. D., Kohn, K. W. & Weinstein, J. N. Use of the Kohonen self-organizing map to study the mechanisms of action of chemotherapeutic agents. J. Natl Cancer Inst. 86, 1853–1859 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Weinstein, J. N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science 275, 343–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Keskin, O. et al. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure. Anticancer Drug Des. 15, 79–98 (2000).

    CAS  PubMed  Google Scholar 

  71. Rabow, A. A., Shoemaker, R. H., Sausville, E. A. & Covell, D. G. Mining the National Cancer Institute's tumor-screening database: identification of compounds with similar cellular activities. J. Med. Chem. 45, 818–840 (2000).

    Article  CAS  Google Scholar 

  72. Wallqvist, A., Rabow, A. A., Shoemaker, R. H., Sausville, E. A. & Covell, D. G. Linking the growth inhibition response from the National Cancer Institute's anticancer screen to gene expression levels and other molecular target data. Bioinformatics 19, 2212–2224 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Wallqvist, A., Rabow, A. A, Shoemaker, R. H., Sausville, E. A. & Covell, D. G. Establishing connections between microarray expression data and chemotherapeutic cancer pharmacology. Mol. Cancer Ther. 1, 311–320 (2002).

    CAS  PubMed  Google Scholar 

  74. Duesbery, N. S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734–737 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Duesbery, N. S. & Vande Woude, G. F. Anthrax lethal factor causes proteolytic inactivation of mitogen-activated protein kinase kinase. J. Appl. Microbiol. 87, 289–293 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Chopra, A. P., Boone, S. A., Liang, X. & Duesbery, N. S. Anthrax lethal factor proteolysis and inactivation of MAPK kinase. J. Biol. Chem. 278, 9402–9406 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Bodart, J. F., Chopra, A., Liang, X. & Duesbery, N. Anthrax, MEK and cancer. Cell Cycle 1, 10–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Panchal, R. G. et al. Identification of small molecule inhibitors of anthrax lethal factor. Nature Struct. Mol. Biol. 11, 67–72 (2004).

    Article  CAS  Google Scholar 

  79. Adams, J. et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622 (1999).

    CAS  PubMed  Google Scholar 

  80. Adams, J. Proteasome inhibition in cancer: development of PS-341. Semin. Oncol. 28, 613–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Holbeck, S. L. & Sausville, E. A. in Proteasome Inhibitors in Cancer Therapy. (ed. Adams, J.) 99–107 (Humana Press, Totowa, USA, 2004).

    Book  Google Scholar 

  82. Szakacs, G. et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell. 6, 129–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Rapisarda, A. et al. Identification of small molecule inhibitors of HIF-1 transcriptional activation pathway. Cancer Res. 62, 1943–1950 (2002).

    Google Scholar 

  85. Rapsidarda, A. et al. Topoisomerase I mediated inhibition of hypoxia inducible factor-1 (HIF-1): mechanism and therapeutic implications. Cancer Res. 64, 1475–1482 (2004).

    Article  Google Scholar 

  86. Decosterd, L. A. Gustafson, K. R., Cardellina, J. H. II, Cragg, G. M & Boyd, M. R. The differential cytotoxicity of cardenolides from Thevetia ahouia. Pytother. 8, 74–77 (1994).

    CAS  Google Scholar 

  87. Naasani, I., Seimiya, H., Yamori, T. & Tsuruo, T. FJ5002: a potent telomerase inhibitor identified by exploiting the disease-oriented screening program with COMPARE analysis. Cancer Res. 15, 4004–4011 (1999).

    Google Scholar 

  88. Dan, S. et al. An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines. Cancer Res. 62, 1139–1147 (2002).

    CAS  PubMed  Google Scholar 

  89. Yamori, T. Panel of human cancer cell lines provides valuable database for drug discovery and bioinformatics. Cancer Chemother. Pharmacol. 52, (Suppl. 1) S74–S79 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Nakatsu, N. et al. Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays. Mol. Cancer Ther. 4, 399–412 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Yaguchi, S. et al. Antitumor activity of ZSTK474, a new phosphatidylinositol-3 kinase inhibitor. J. Natl Cancer Inst. 98, 545–556 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of K. D. Paull, a friend and collaborator to the many investigators involved in the development and operation of the NCI60. I thank J. Weinstein for critical review of the manuscript, and D. Scudiero, A. Monks, J. Laudeman and T. Silvers for their assistance in the generation of the illustrations.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

leukaemia

Lung

colon

Breast

prostate

renal

melanoma

ovarian

gastric carcinoma

FURTHER INFORMATION

3D mind website

American Type Culture Collection

Cancer Cell website

Databases Correlation

Developmental Therapeutics Program public website

Genomics and Bioinformatics Group

Molecular Targets Development Program

Natural Products Branch

PubChem

R*A*N*D section of the DTP website

Report of the National Cancer Institute Developmental Therapeutics Program Review Group

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoemaker, R. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6, 813–823 (2006). https://doi.org/10.1038/nrc1951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1951

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing