Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Is there more to BARD1 than BRCA1?

Key Points

  • BRCA1-associated ring domain 1 (BARD1) is the main binding partner of BRCA1 and is essential for the tumour-suppressor functions of BRCA1.

  • The BARD1–BRCA1 heterodimer has ubiquitin ligase activity that targets proteins involved in cell-cycle regulation and DNA repair for degradation.

  • BARD1 has a BRCA1-independent function in mediating p53-dependent apoptosis. It binds to p53, facilitating its phosphorylation and stabilization.

  • BARD1 is expressed in most proliferative tissues, including that of the breast, ovary and uterus. It is transcriptionally upregulated in response to DNA damage, hypoxia and hormone signalling. Its translation is activated by cell-cycle-dependent phosphorylation.

  • BARD1 is mutated or truncated in breast, ovarian and uterine tumour samples.

  • Depletion of BARD1 leads to early embryonic lethality in mice, and genomic instability in vitro and in vivo; phenotypes that are also observed for BRCA1 or BRCA2 deficiencies.

Abstract

It has been over a decade since mutations in BRCA1 and BRCA2 were found to be associated with a small number of familial breast cancer cases. BRCA1 is a large protein that interacts with many other proteins that have diverse functions, so it has been a challenge to determine how defects in its function could lead to cancer. One particular protein, BARD1, seems to be an important regulator of the tumour-suppressor function of BRCA1, as well as acting as a tumour suppressor itself. BARD1 is indispensable for cell viability, so loss-of-function mutations are rare, but mutations and truncations that alter its function might be involved in the pathogenesis of breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BARD1 protein.
Figure 2: Protein interactions and functional domains of BARD1.
Figure 3: Hypothetical model of BARD1 pathways and functions.

Similar content being viewed by others

References

  1. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    CAS  PubMed  Google Scholar 

  2. Wooster, R. et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12–13. Science 265, 2088–2090 (1994).

    CAS  PubMed  Google Scholar 

  3. Wu, L. C. et al. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nature Genet 14, 430–440 (1996). The BRCA1 N-terminal region was used as bait in a two-hybrid interaction screen. BARD1 emerged as the major interacting protein, and mutations in BRCA1 inhibited this interaction. BARD1 shares similarities with BRCA1 at the N terminus, possessing a RING-finger domain, and at the C terminus. The C-terminal homologous domains, which contain unusual protein motifs, are structurally similar to protein regions in many repair proteins and were designated BRCT domains.

    CAS  PubMed  Google Scholar 

  4. Brzovic, P. S., Meza, J. E., King, M. C. & Klevit, R. E. BRCA1 RING domain cancer-predisposing mutations. Structural consequences and effects on protein–protein interactions. J. Biol. Chem. 276, 41399–41406 (2001).

    CAS  PubMed  Google Scholar 

  5. Meza, J. E., Brzovic, P. S., King, M. C. & Klevit, R. E. Mapping the functional domains of BRCA1. Interaction of the ring finger domains of BRCA1 and BARD1. J. Biol. Chem. 274, 5659–5665 (1999).

    CAS  PubMed  Google Scholar 

  6. Joukov, V., Chen, J., Fox, E. A., Green, J. B. & Livingston, D. M. Functional communication between endogenous BRCA1 and its partner, BARD1, during Xenopus laevis development. Proc. Natl Acad. Sci. USA 98, 12078–12083 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Manke, I. A., Lowery, D. M., Nguyen, A. & Yaffe, M. B. BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302, 636–639 (2003).

    CAS  PubMed  Google Scholar 

  8. Glover, J. N., Williams, R. S. & Lee, M. S. Interactions between BRCT repeats and phosphoproteins: tangled up in two. Trends Biochem. Sci. 29, 579–85 (2004).

    CAS  PubMed  Google Scholar 

  9. Boulton, S. J. et al. BRCA1/BARD1 orthologs required for DNA repair in Caenorhabditis elegans. Curr. Biol. 14, 33–39 (2004).

    CAS  PubMed  Google Scholar 

  10. Lafarge, S. & Montane, M. H. Characterization of Arabidopsis thaliana ortholog of the human breast cancer susceptibility gene 1: AtBRCA1, strongly induced by gamma rays. Nucleic Acids Res. 31, 1148–1155 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Thai, T. H. et al. Mutations in the BRCA1-associated RING domain (BARD1) gene in primary breast, ovarian and uterine cancers. Hum. Mol. Genet. 7, 195–202 (1998).

    CAS  PubMed  Google Scholar 

  12. Ghimenti, C. et al. Germline mutations of the BRCA1-associated ring domain (BARD1) gene in breast and breast/ovarian families negative for BRCA1 and BRCA2 alterations. Genes Chromosomes Cancer 33, 235–242 (2002).

    CAS  PubMed  Google Scholar 

  13. Karppinen, S. M., Heikkinen, K., Rapakko, K. & Winqvist, R. Mutation screening of the BARD1 gene: evidence for involvement of the Cys557Ser allele in hereditary susceptibility to breast cancer. J. Med. Genet. 41, e114 (2004).

    PubMed  PubMed Central  Google Scholar 

  14. Ishitobi, M. et al. Mutational analysis of BARD1 in familial breast cancer patients in Japan. Cancer Lett. 200, 1–7 (2003).

    CAS  PubMed  Google Scholar 

  15. Wu, J. Y. et al. Aberrant expression of BARD1 in breast and ovarian cancers with poor prognosis. Int. J. Cancer 118, 1215–1226 (2006).

    CAS  PubMed  Google Scholar 

  16. McCarthy, E. E., Celebi, J. T., Baer, R. & Ludwig, T. Loss of Bard1, the heterodimeric partner of the Brca1 tumor suppressor, results in early embryonic lethality and chromosomal instability. Mol. Cell. Biol. 23, 5056–5063 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Feki, A. et al. BARD1 induces apoptosis by catalysing phosphorylation of p53 by DNA-damage response kinase. Oncogene 24, 3726–3736 (2005).

    CAS  PubMed  Google Scholar 

  18. Tsuzuki, M. et al. A truncated splice variant of human BARD1 that lacks the RING finger and ankyrin repeats. Cancer Lett. 233, 108–116 (2005).

    Google Scholar 

  19. Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002).

    CAS  PubMed  Google Scholar 

  20. Spahn, L. et al. Interaction of the EWS NH2 terminus with BARD1 links the Ewing's sarcoma gene to a common tumor suppressor pathway. Cancer Res. 62, 4583–4587 (2002).

    CAS  PubMed  Google Scholar 

  21. Hashizume, R. et al. The RING heterodimer BRCA1–BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276, 14537–14540 (2001). The BRCA1–BARD1 heterodimeric RING-finger complex contains significant ubiquitin ligase activity that can be disrupted by a breast cancer-derived RING-finger mutation in BRCA1. Whereas individually BRCA1 and BARD1 have very low ubiquitin ligase activities in vitro , BRCA1 combined with BARD1 exhibits dramatically higher activity.

    CAS  PubMed  Google Scholar 

  22. Oyake, D., Nishikawa, H., Koizuka, I., Fukuda, M. & Ohta, T. Targeted substrate degradation by an engineered double RING ubiquitin ligase. Biochem. Biophys. Res. Commun. 295, 370–375 (2002).

    CAS  PubMed  Google Scholar 

  23. Morris, J. R. & Solomon, E. BRCA1: BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum. Mol. Genet. 13, 807–817 (2004).

    CAS  PubMed  Google Scholar 

  24. Baer, R. & Ludwig, T. The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity. Curr. Opin. Genet. Dev. 12, 86–91 (2002).

    CAS  PubMed  Google Scholar 

  25. Ruffner, H., Joazeiro, C. A., Hemmati, D., Hunter, T. & Verma, I. M. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc. Natl Acad. Sci. USA 98, 5134–5139 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fabbro, M., Rodriguez, J. A., Baer, R. & Henderson, B. R. BARD1 induces BRCA1 intranuclear foci formation by increasing RING-dependent BRCA1 nuclear import and inhibiting BRCA1 nuclear export. J. Biol. Chem. 277, 21315–21324 (2002).

    CAS  PubMed  Google Scholar 

  27. Wu-Baer, F., Lagrazon, K., Yuan, W. & Baer, R. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J. Biol. Chem. 278, 34743–34746 (2003).

    CAS  PubMed  Google Scholar 

  28. Chen, A., Kleiman, F. E., Manley, J. L., Ouchi, T. & Pan, Z. Q. Autoubiquitination of the BRCA1–BARD1 RING ubiquitin ligase. J. Biol. Chem. 277, 22085–22092 (2002).

    CAS  PubMed  Google Scholar 

  29. Mallery, D. L., Vandenberg, C. J. & Hiom, K. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J. 21, 6755–6762 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsu, L. C. & White, R. L. BRCA1 is associated with the centrosome during mitosis. Proc. Natl Acad. Sci. USA 95, 12983–12988 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, X. et al. Centrosome amplification and a defective G2–M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395 (1999).

    CAS  PubMed  Google Scholar 

  32. Starita, L. M. et al. BRCA1-dependent ubiquitination of γ-tubulin regulates centrosome number. Mol. Cell. Biol. 24, 8457–8466 (2004). One of the key problems in understanding the biology of BRCA1 and BARD1 has been the identification of a specific target of BRCA1/BARD1 ubiquitylation and its effect on mammary cell biology. This study identified γ-tubulin, a component of the centrosome, as a ubiquitylation target and indicates an effect important in the aetiology of breast cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ouchi, M. et al. BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J. Biol. Chem. 279, 19643–19648 (2004).

    CAS  PubMed  Google Scholar 

  34. Sato, K. et al. Nucleophosmin/B23 is a candidate substrate for the BRCA1–BARD1 ubiquitin ligase. J. Biol. Chem. 279, 30919–30922 (2004).

    CAS  PubMed  Google Scholar 

  35. Grisendi, S. et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437, 147–153 (2005).

    CAS  PubMed  Google Scholar 

  36. Hernandez-Munoz, I. et al. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc. Natl Acad. Sci. USA 102, 7635–7640 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Haile, D. T. & Parvin, J. D. Activation of transcription in vitro by the BRCA1 carboxyl-terminal domain. J. Biol. Chem. 274, 2113–2117 (1999).

    CAS  PubMed  Google Scholar 

  38. Monteiro, A. N., August, A. & Hanafusa, H. Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc. Natl Acad. Sci. USA 93, 13595–13599 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chapman, M. S. & Verma, I. M. Transcriptional activation by BRCA1. Nature 382, 678–679 (1996).

    CAS  PubMed  Google Scholar 

  40. Monteiro, A. N., August, A. & Hanafusa, H. Common BRCA1 variants and transcriptional activation. Am. J. Hum. Genet. 61, 761–762 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Scully, R. et al. BRCA1 is a component of the RNA polymerase II holoenzyme. Proc. Natl Acad. Sci. USA 94, 5605–5610 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Anderson, S. F., Schlegel, B. P., Nakajima, T., Wolpin, E. S. & Parvin, J. D. BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nature Genet. 19, 254–6 (1998).

    CAS  PubMed  Google Scholar 

  43. Paull, T. T., Cortez, D., Bowers, B., Elledge, S. J. & Gellert, M. Direct DNA binding by Brca1. Proc. Natl. Acad. Sci. USA 98, 6086–91 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chiba, N. & Parvin, J. D. The BRCA1 and BARD1 association with the RNA polymerase II holoenzyme. Cancer Res. 62, 4222–8 (2002).

    CAS  PubMed  Google Scholar 

  45. Kleiman, F. E. et al. BRCA1/BARD1 inhibition of mRNA 3′ processing involves targeted degradation of RNA polymerase II. Genes Dev. 19, 1227–37 (2005). The same group demonstrated that BARD1 interacts and transiently inhibits the pre-mRNA 3′ processing machinery. Here it is shown that this inhibition involves proteasomal degradation of a component necessary for processing, known as RNA polymerase II (RNA Pol II). Specifically, RNA Pol IIO, the elongating form of the enzyme, is an in vitro target of the BRCA1–BARD1 ubiquitin ligase activity. Knockdown of BRCA1 and BARD1, mediated by siRNA, consistently resulted in the stabilization of RNA Pol II after DNA damage.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Starita, L. M. et al. BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. J. Biol. Chem. 280, 24498–24505 (2005).

    CAS  PubMed  Google Scholar 

  47. Scully, R. et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 90, 425–435 (1997).

    CAS  PubMed  Google Scholar 

  48. Chen, J. et al. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell 2, 317–328 (1998).

    CAS  PubMed  Google Scholar 

  49. Jasin, M. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 21, 8981–8993 (2002).

    CAS  PubMed  Google Scholar 

  50. Wang, Q. et al. Adenosine nucleotide modulates the physical interaction between hMSH2 and BRCA1. Oncogene 20, 4640–4649 (2001).

    CAS  PubMed  Google Scholar 

  51. Takagaki, Y., Manley, J. L., MacDonald, C. C., Wilusz, J. & Shenk, T. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev. 4, 2112–2120 (1990).

    CAS  PubMed  Google Scholar 

  52. Takagaki, Y. & Manley, J. L. RNA recognition by the human polyadenylation factor CstF. Mol. Cell. Biol. 17, 3907–3914 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kleiman, F. E. & Manley, J. L. Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science 285, 1576–1579 (1999).

    CAS  PubMed  Google Scholar 

  54. Colgan, D. F. & Manley, J. L. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11, 2755–2766 (1997).

    CAS  PubMed  Google Scholar 

  55. Zhao, W. & Manley, J. L. Deregulation of poly(A) polymerase interferes with cell growth. Mol. Cell. Biol. 18, 5010–5020 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kleiman, F. E. & Manley, J. L. The BARD1–CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression. Cell 104, 743–753 (2001).

    CAS  PubMed  Google Scholar 

  57. Ayi, T. C., Tsan, J. T., Hwang, L. Y., Bowcock, A. M. & Baer, R. Conservation of function and primary structure in the BRCA1-associated RING domain (BARD1) protein. Oncogene 17, 2143–2148 (1998).

    CAS  PubMed  Google Scholar 

  58. Irminger-Finger, I., Soriano, J. V., Vaudan, G., Montesano, R. & Sappino, A. P. In vitro repression of Brca1-associated RING domain gene, Bard1, induces phenotypic changes in mammary epithelial cells. J. Cell Biol. 143, 1329–1339 (1998). A comparative expression analysis of Bard1 and Brca1 shows that both genes are co-regulated in most tissues, but their relative expression differs in hormonally controlled organs. The repression of Bard1 in mammary gland cells showed genetic instability, morphological cellular changes, loss of polarity in three-dimensional cultures, and loss of contact inhibition of growth, suggesting a premalignant transformation.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Feki, A. et al. BARD1 expression during spermatogenesis is associated with apoptosis and hormonally regulated. Biol. Reprod. 71, 1614–1624 (2004).

    CAS  PubMed  Google Scholar 

  60. Irminger-Finger, I. et al. Identification of BARD1 as mediator between proapoptotic stress and p53-dependent apoptosis. Mol. Cell 8, 1255–1266 (2001). Increased expression of BARD1 was observed in association with p53 stabilization and apoptosis after genotoxic stress in vitro and in vivo . Conversely, cells with respressed BARD1expression were resistant to induction of apoptosis. The exogenous expression of BARD1 led to p53 stabilization and apoptosis. In this instance, induction of apoptosis was dependent on functional p53 and inhibited by coexpression of BRCA1.

    CAS  PubMed  Google Scholar 

  61. Meek, D. W. Post-translational modification of p53. Semin. Cancer Biol. 5, 203–210 (1994).

    CAS  PubMed  Google Scholar 

  62. Milczarek, G. J., Martinez, J. & Bowden, G. T. p53 Phosphorylation: biochemical and functional consequences. Life Sci. 60, 1–11 (1997).

    CAS  PubMed  Google Scholar 

  63. Fabbro, M. et al. BRCA1–BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J. Biol. Chem. 279, 31251–31258 (2004).

    CAS  PubMed  Google Scholar 

  64. Jefford, C. E., Feki, A., Harb, J., Krause, K. H. & Irminger-Finger, I. Nuclear-cytoplasmic translocation of BARD1 is linked to its apoptotic activity. Oncogene 23, 3509–3520 (2004).

    CAS  PubMed  Google Scholar 

  65. Rodriguez, J. A., Schuchner, S., Au, W. W., Fabbro, M. & Henderson, B. R. Nuclear-cytoplasmic shuttling of BARD1 contributes to its proapoptotic activity and is regulated by dimerization with BRCA1. Oncogene 23, 1809–1820 (2004).

    CAS  PubMed  Google Scholar 

  66. Reedy, M. B., Hang, T., Gallion, H., Arnold, S. & Smith, S. A. Antisense inhibition of BRCA1 expression and molecular analysis of hereditary tumors indicate that functional inactivation of the p53 DNA damage response pathway is required for BRCA-associated tumorigenesis. Gynecol. Oncol. 81, 441–446 (2001).

    CAS  PubMed  Google Scholar 

  67. Schuchner, S., Tembe, V., Rodriguez, J. A. & Henderson, B. R. Nuclear targeting and cell cycle regulatory function of human BARD1. J. Biol. Chem. 280, 8855–8861 (2005).

    PubMed  Google Scholar 

  68. Gautier, F., Irminger-Finger, I., Gregoire, M., Meflah, K. & Harb, J. Identification of an apoptotic cleavage product of BARD1 as an autoantigen: a potential factor in the antitumoral response mediated by apoptotic bodies. Cancer Res. 60, 6895–6900 (2000).

    CAS  PubMed  Google Scholar 

  69. Fabbro, M., Schuechner, S., Au, W. W. & Henderson, B. R. BARD1 regulates BRCA1 apoptotic function by a mechanism involving nuclear retention. Exp. Cell Res. 298, 661–673 (2004).

    CAS  PubMed  Google Scholar 

  70. Baldwin, A. S., Jr. The NF-kB and IkB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–83 (1996).

    CAS  PubMed  Google Scholar 

  71. Baldwin, A. S. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J. Clin. Invest. 107, 241–246 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dechend, R. et al. The Bcl-3 oncoprotein acts as a bridging factor between NF-κB/Rel and nuclear co-regulators. Oncogene 18, 3316–3323 (1999).

    CAS  PubMed  Google Scholar 

  73. Benezra, M. et al. BRCA1 augments transcription by the NF-κB transcription factor by binding to the Rel domain of the p65/RelA subunit. J. Biol. Chem. 278, 26333–26341 (2003).

    CAS  PubMed  Google Scholar 

  74. Grigorova, M., Staines, J. M., Ozdag, H., Caldas, C. & Edwards, P. A. Possible causes of chromosome instability: comparison of chromosomal abnormalities in cancer cell lines with mutations in BRCA1, BRCA2, CHK2 and BUB1. Cytogenet. Genome. Res. 104, 333–340 (2004).

    CAS  PubMed  Google Scholar 

  75. Daniels, M. J., Wang, Y., Lee, M. & Venkitaraman, A. R. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science 306, 876–879 (2004).

    CAS  PubMed  Google Scholar 

  76. Chen, Y. et al. BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res. 56, 3168–3172 (1996).

    CAS  PubMed  Google Scholar 

  77. Vaughn, J. P. et al. BRCA1 expression is induced before DNA synthesis in both normal and tumor-derived breast cells. Cell Growth Differ. 7, 711–715 (1996).

    CAS  PubMed  Google Scholar 

  78. Gudas, J. M. et al. Cell cycle regulation of BRCA1 messenger RNA in human breast epithelial cells. Cell Growth Differ. 7, 717–723 (1996).

    CAS  PubMed  Google Scholar 

  79. Rajan, J. V., Wang, M., Marquis, S. T. & Chodosh, L. A. Brca2 is coordinately regulated with Brca1 during proliferation and differentiation in mammary epithelial cells. Proc. Natl Acad. Sci. USA 93, 13078–13083 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Jin, Y. et al. Cell cycle-dependent colocalization of BARD1 and BRCA1 proteins in discrete nuclear domains. Proc. Natl Acad. Sci. USA 94, 12075–12080 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Choudhury, A. D., Xu, H. & Baer, R. Ubiquitination and proteasomal degradation of the BRCA1 tumor suppressor is regulated during cell cycle progression. J. Biol. Chem. 279, 33909–33918 (2004).

    CAS  PubMed  Google Scholar 

  82. Hayami, R. et al. Down-regulation of BRCA1–BARD1 ubiquitin ligase by CDK2. Cancer Res. 65, 6–10 (2005).

    CAS  PubMed  Google Scholar 

  83. Ren, B. et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev. 16, 245–256 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Choudhury, A. D. et al. Hyperphosphorylation of the BARD1 tumor suppressor in mitotic cells. J. Biol. Chem. 280, 24669–24679 (2005).

    CAS  PubMed  Google Scholar 

  85. Elledge, S. J. & Amon, A. The BRCA1 suppressor hypothesis: an explanation for the tissue-specific tumor development in BRCA1 patients. Cancer Cell 1, 129–132 (2002).

    CAS  PubMed  Google Scholar 

  86. Ye, K. Nucleophosmin/B23, a multifunctional protein that can regulate apoptosis. Cancer Biol. Ther. 4 918–923 (2005).

    CAS  PubMed  Google Scholar 

  87. Sado, T. & Ferguson-Smith, A. C. Imprinted X inactivation and reprogramming in the preimplantation mouse embryo. Hum. Mol. Genet. 14 (Spec. No. 1), R59–R64 (2005).

    CAS  PubMed  Google Scholar 

  88. Valk-Lingbeek, M. E., Bruggeman, S. W. & van Lohuizen, M. Stem cells and cancer; the polycomb connection. Cell 118, 409–418 (2004).

    CAS  PubMed  Google Scholar 

  89. Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    CAS  PubMed  Google Scholar 

  90. Ganesan, S. et al. Association of BRCA1 with the inactive X chromosome and XIST RNA. Philos. Trans. R. Soc. Lond. B 359, 123–128 (2004).

    CAS  Google Scholar 

  91. Siddique, H., Zou, J. P., Rao, V. N. & Reddy, E. S. The BRCA2 is a histone acetyltransferase. Oncogene 16, 2283–2285 (1998)

    CAS  PubMed  Google Scholar 

  92. Otte, A. P. & Kwaks, T. H. Gene repression by Polycomb group protein complexes: a distinct complex for every occasion? Curr. Opin. Genet. Dev. 13, 448–454 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to G.J. Laurent and W.C. Leung for discussions, comments and critiques. This work was supported by a grant from the Swiss National Science Foundation (SNSF) to I.I.-F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmgard Irminger-Finger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Biomolecular Interaction Network Database BIND

Genecard

Gene Expression Omnibus (GEO) database

Human Gene Mutations Database BIOBASE

Search Tool for the Retrieval of Interacting Genes/Proteins STRING

Simple Modular Architecture Research Tool (SMART)

Glossary

RING-finger domain

The RING-finger domain, first identified in the RING (really interesting new gene) protein, describes a specific cysteine-rich class of Zn2+-binding Zinc-finger motifs. RING-finger domains are found as DNA-binding domains and as protein-interaction domains. Recently, ubiquitin ligase activity has been attributed to many RING-finger proteins.

Loss of heterozygosity

(LOH). In cells that carry a mutated allele of a tumour-suppressor gene, the gene becomes fully inactivated when the cell loses a large part of the chromosome carrying the wild-type allele. Regions with a high frequency of LOH are believed to harbour tumour-suppressor genes.

Clear cell adenocarcinoma

Like most ovarian cancers, the clear cell carcinoma has a surface epithelial origin. Clear cell carcinomas are characterized by large epithelial cells with abundant clear cytoplasm. Clear cell carcinomas are dedifferentiated, highly aggressive tumours, and the 5-year survival rate is less than 50%.

Ubiquitin ligase (E3)

Proteins targeted for degradation by the proteasome are selected by having covalently linked ubiquitin chains. This ubiquitylation requires a ubiquitin-conjugating enzyme and a ubiquitin-protein ligase. The importance of E3s is highlighted by the number of normal cellular processes they regulate and the number of diseases that are associated with their loss of function or inappropriate targeting.

Nuclear dots

The term nuclear dots describes the local accumulation of proteins within the nucleus, as detected by immunostaining.

Oestrus, dioestrus and postoestrus

Oestrus specifies the time of ovulation in mammals, which can be stimulated by different factors. Dioestrus and postoestrus indicate the time before and after ovulation, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irminger-Finger, I., Jefford, C. Is there more to BARD1 than BRCA1?. Nat Rev Cancer 6, 382–391 (2006). https://doi.org/10.1038/nrc1878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing