Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial tumour suppressors: a genetic and biochemical update

Key Points

  • Mitochondrial tumour-suppressors are nuclear-encoded mitochondrial proteins that show loss-of-function mutations in inherited or sporadic tumours. To date, four such genes are known, and they encode three of the four subunits of succinate dehydrogenase (SDHB, SDHC and SDHD) and fumarate hydratase (FH).

  • Mutations in the genes encoding SDH are predominantly linked to phaeochromocytoma or paraganglioma, whereas mutations in FH lead to leiomyoma, leiomyosarcoma and in some cases to renal cell carcinoma.

  • Both FH and SDH are enzymes of the tricarboxylic acid (TCA) cycle, whereas SDH is also a functional member of the mitochondrial respiratory chain (complex II). They are crucial elements of cellular energy metabolism, and therefore it is important to understand their role in tumour suppression.

  • The leading biological explanation for the link between loss-of-function of SDH or FH to tumorigenesis is the induction of a pseudo-hypoxic pathway. This is manifest by the induction of hypoxia-inducible factor (HIF) and its target genes under normoxic conditions.

  • Two important biochemical mechanisms that explain how mutations in mitochondrial tumour suppressor genes (particularly SDHD) contribute to tumour formation have been suggested. These mechanisms are: redox stress, resulting from increased reactive oxygen species (ROS) production in mitochondria, or metabolic signalling, involving TCA cycle metabolites as intracellular messengers.

  • Some types of mutant SDH proteins generate ROS, and these inhibit HIF prolyl hydroxylase (PHD), an enzyme that targets the α-subunit of HIF for degradation under normoxic conditions. Therefore, it was suggested that ROS can mediate pseudo-hypoxia in tumours with mutant SDH.

  • Metabolic signalling was proposed recently as an alternative, but not mutually exclusive mechanism to ROS in inducing pseudo-hypoxia — succinate levels are increased in SDH-deficient tumours and succinate can inhibit PHD, leading to HIF induction.

Abstract

Since the discovery 5 years ago that the D-subunit of succinate dehydrogenase (SDHD) can behave as a classic tumour suppressor, other nuclear-encoded mitochondrial proteins (SDHB, SDHC and fumarate hydratase) have been implicated in tumour susceptibility. Mutations in these proteins are principally involved in familial predisposition to benign tumours, but the spectrum of inherited lesions is increasingly recognized to include malignant tumours, such as malignant phaeochromocytomas and renal cell carcinomas. Here we review recent advances in the field of mitochondrial tumour suppressors, the biochemical pathway that links mitochondrial dysfunction with tumorigenesis, and potential therapeutic approaches to these malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mitochondrial tumour suppressors, the tricarboxylic acid cycle and complex II of the respiratory chain.
Figure 2: Prolyl hydroxylase might link mitochondrial dysfunction to hypoxia-inducible-factor activation.
Figure 3: The mitochondrion-to-cytosol metabolic signalling pathway contributes to cancer development by affecting gene expression in the nucleus.

Similar content being viewed by others

References

  1. Warburg, O., Wind, F. & Neglers, E. in Metabolism of Tumours (ed. Warburg, O.) 254–270 (Constable & Co., London, 1930).

    Google Scholar 

  2. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  PubMed  Google Scholar 

  3. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004).

    CAS  Google Scholar 

  4. Carew, J. S. & Huang, P. Mitochondrial defects in cancer. Mol. Cancer 1, 9 (2002).

    PubMed  PubMed Central  Google Scholar 

  5. Polyak, K. et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genet. 20, 291–293 (1998). This work showed for the first time that the majority of colorectal cancer cells contain somatic and mostly homoplasmic mutations in their mtDNA.

    CAS  PubMed  Google Scholar 

  6. Coller, H. A. et al. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nature Genet. 28, 147–150 (2001).

    CAS  PubMed  Google Scholar 

  7. Petros, J. A. et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl Acad. Sci. USA 102, 719–724 (2005).

    CAS  PubMed  Google Scholar 

  8. Shidara, Y. et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res. 65, 1655–1663 (2005).

    CAS  PubMed  Google Scholar 

  9. Yankovskaya, V. et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299, 700–704 (2003). A comprehensive study of the E. coli SDH homologue structure and function. Based on the electron distribution in redox centres, this work makes important analogies to the structure and function of human SDH, and discusses the potential role of several SDH mutations in ROS generation.

    CAS  PubMed  Google Scholar 

  10. Astuti, D. et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet. 69, 49–54 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Baysal, B. E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851 (2000). The first discovery of a mitochondrial tumour-suppressor gene in HPGL.

    CAS  PubMed  Google Scholar 

  12. Niemann, S. & Muller, U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nature Genet. 26, 268–270 (2000).

    CAS  PubMed  Google Scholar 

  13. Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature Genet. 30, 406–410 (2002). References 10–13 were the first studies to characterize SDHB, SDHD, SDHC and FH as tumour suppressors in the hereditary syndromes PGL4, PGL1, PGL3 and HLRCC, respectively.

    CAS  PubMed  Google Scholar 

  14. Launonen, V. et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc. Natl Acad. Sci. USA 98, 3387–3392 (2001).

    CAS  PubMed  Google Scholar 

  15. Baysal, B. E. On the association of succinate dehydrogenase mutations with hereditary paraganglioma. Trends Endocrinol. Metab. 14, 453–459 (2003).

    CAS  PubMed  Google Scholar 

  16. Eng, C., Kiuru, M., Fernandez, M. J. & Aaltonen, L. A. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nature Rev. Cancer 3, 193–202 (2003).

    CAS  Google Scholar 

  17. Pollard, P. J., Wortham, N. C. & Tomlinson, I. P. The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann. Med. 35, 632–639 (2003).

    CAS  PubMed  Google Scholar 

  18. Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7, 77–85 (2005). This work described the metabolic signalling mechanism showing that succinate can behave as an intracellular messenger that links SDH dysfunction to HIF induction.

    CAS  PubMed  Google Scholar 

  19. Holme, E. et al. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A→G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am. J. Hum. Genet. 52, 551–556 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gimm, O., Armanios, M., Dziema, H., Neumann, H. P. & Eng, C. Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Res. 60, 6822–6825 (2000).

    CAS  PubMed  Google Scholar 

  21. Favier, J. et al. Hereditary paraganglioma/pheochromocytoma and inherited succinate dehydrogenase deficiency. Horm. Res. 63, 171–179 (2005).

    CAS  PubMed  Google Scholar 

  22. Tomitsuka, E., Goto, Y., Taniwaki, M. & Kita, K. Direct evidence for expression of type II flavoprotein subunit in human complex II (succinate–ubiquinone reductase). Biochem. Biophys. Res. Commun. 311, 774–779 (2003).

    CAS  PubMed  Google Scholar 

  23. Tomitsuka, E. et al. Direct evidence for two distinct forms of the flavoprotein subunit of human mitochondrial complex II (succinate–ubiquinone reductase). J. Biochem. (Tokyo) 134, 191–195 (2003).

    CAS  Google Scholar 

  24. Alam, N. A. et al. Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum. Mol. Genet. 12, 1241–1252 (2003).

    CAS  PubMed  Google Scholar 

  25. Taschner, P. E. et al. Nearly all hereditary paragangliomas in the Netherlands are caused by two founder mutations in the SDHD gene. Genes Chromosomes Cancer 31, 274–281 (2001).

    CAS  PubMed  Google Scholar 

  26. Niemann, S., Muller, U., Engelhardt, D. & Lohse, P. Autosomal dominant malignant and catecholamine-producing paraganglioma caused by a splice donor site mutation in SDHC. Hum. Genet. 113, 92–94 (2003).

    PubMed  Google Scholar 

  27. McWhinney, S. R. et al. Large germline deletions of mitochondrial complex II subunits SDHB and SDHD in hereditary paraganglioma. J. Clin. Endocrinol. Metab. 89, 5694–5699 (2004).

    CAS  PubMed  Google Scholar 

  28. Baysal, B. E. et al. An Alu-mediated partial SDHC deletion causes familial and sporadic paraganglioma. J. Med. Genet. 41, 703–709 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chan, I., Wong, T., Martinez-Mir, A., Christiano, A. M. & McGrath, J. A. Familial multiple cutaneous and uterine leiomyomas associated with papillary renal cell cancer. Clin. Exp. Dermatol. 30, 75–78 (2005).

    CAS  PubMed  Google Scholar 

  30. Toro, J. R. et al. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am. J. Hum. Genet. 73, 95–106 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Douwes Dekker, P. B. et al. SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. J. Pathol. 201, 480–486 (2003).

    CAS  PubMed  Google Scholar 

  32. Neumann, H. P. et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 292, 943–951 (2004).

    CAS  PubMed  Google Scholar 

  33. Gimenez-Roqueplo, A. P. et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 63, 5615–5621 (2003).

    CAS  PubMed  Google Scholar 

  34. Maier-Woelfle, M. et al. A novel succinate dehydrogenase subunit B gene mutation, H132P, causes familial malignant sympathetic extraadrenal paragangliomas. J. Clin. Endocrinol. Metab. 89, 362–367 (2004).

    CAS  PubMed  Google Scholar 

  35. Rustin, P., Munnich, A. & Rotig, A. Succinate dehydrogenase and human diseases: new insights into a well-known enzyme. Eur. J. Hum. Genet. 10, 289–291 (2002).

    CAS  PubMed  Google Scholar 

  36. Vanharanta, S. et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am. J. Hum. Genet. 74, 153–159 (2004).

    CAS  PubMed  Google Scholar 

  37. Astuti, D. et al. Germline SDHD mutation in familial phaeochromocytoma. Lancet 357, 1181–1182 (2001).

    CAS  PubMed  Google Scholar 

  38. Baysal, B. E. et al. Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas. J. Med. Genet. 39, 178–183 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Neumann, H. P. et al. Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med. 346, 1459–1466 (2002).

    CAS  PubMed  Google Scholar 

  40. Benn, D. E. et al. Novel succinate dehydrogenase subunit B (SDHB) mutations in familial phaeochromocytomas and paragangliomas, but an absence of somatic SDHB mutations in sporadic phaeochromocytomas. Oncogene 22, 1358–1364 (2003).

    CAS  PubMed  Google Scholar 

  41. Dannenberg, H. et al. Clinical characteristics of pheochromocytoma patients with germline mutations in SDHD. J. Clin. Oncol. 23, 1894–1901 (2005).

    CAS  PubMed  Google Scholar 

  42. Mhatre, A. N., Li, Y., Feng, L., Gasperin, A. & Lalwani, A. K. SDHB, SDHC, and SDHD mutation screen in sporadic and familial head and neck paragangliomas. Clin. Genet. 66, 461–466 (2004).

    CAS  PubMed  Google Scholar 

  43. Dannenberg, H. et al. Frequent germ-line succinate dehydrogenase subunit D gene mutations in patients with apparently sporadic parasympathetic paraganglioma. Clin. Cancer Res. 8, 2061–2066 (2002).

    CAS  PubMed  Google Scholar 

  44. Masuoka, J. et al. Germline SDHD mutation in paraganglioma of the spinal cord. Oncogene 20, 5084–5086 (2001).

    CAS  PubMed  Google Scholar 

  45. Barker, K. T. et al. Low frequency of somatic mutations in the FH/multiple cutaneous leiomyomatosis gene in sporadic leiomyosarcomas and uterine leiomyomas. Br. J. Cancer 87, 446–448 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kiuru, M. et al. Few FH mutations in sporadic counterparts of tumor types observed in hereditary leiomyomatosis and renal cell cancer families. Cancer Res. 62, 4554–4557 (2002).

    CAS  PubMed  Google Scholar 

  47. Pollard, P. et al. Evidence of increased microvessel density and activation of the hypoxia pathway in tumours from the hereditary leiomyomatosis and renal cell cancer syndrome. J. Pathol. 205, 41–49 (2005). Shows a phenotypic link between FH mutations and pseudo-hypoxia.

    PubMed  Google Scholar 

  48. Lehtonen, R. et al. Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. Am. J. Pathol. 164, 17–22 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kiuru, M. et al. No germline FH mutations in familial breast cancer patients. Eur. J. Hum. Genet. 13, 506–509 (2005).

    CAS  PubMed  Google Scholar 

  50. Morris, M. R. et al. Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour suppressor genes in renal cell carcinoma. J. Clin. Pathol. 57, 706–711 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Newmeyer, D. D. & Ferguson-Miller, S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481–490 (2003).

    CAS  Google Scholar 

  52. Karbowski, M. & Youle, R. J. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ. 10, 870–880 (2003).

    CAS  PubMed  Google Scholar 

  53. Downward, J. Cell biology: metabolism meets death. Nature 424, 896–897 (2003).

    CAS  PubMed  Google Scholar 

  54. Ricci, J. E. et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117, 773–786 (2004).

    CAS  PubMed  Google Scholar 

  55. Albayrak, T. et al. The tumor suppressor cybL, a component of the respiratory chain, mediates apoptosis induction. Mol. Biol. Cell 14, 3082–3096 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ishii, T. et al. A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res. 65, 203–209 (2005).

    CAS  PubMed  Google Scholar 

  57. Lee, S. et al. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8, 155–167 (2005).

    PubMed  Google Scholar 

  58. Kim, J. W. & Dang, C. V. Multifaceted roles of glycolytic enzymes. Trends Biochem. Sci. 30, 142–150 (2005).

    CAS  PubMed  Google Scholar 

  59. Majewski, N. et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell 16, 819–830 (2004).

    CAS  PubMed  Google Scholar 

  60. Storz, P. Reactive oxygen species in tumor progression. Front. Biosci. 10, 1881–1896 (2005).

    CAS  PubMed  Google Scholar 

  61. Semenza, G. L. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med. 8 (Suppl.), 62–67 (2002).

    Google Scholar 

  62. Covello, K. L. & Simon, M. C. HIFs, hypoxia, and vascular development. Curr. Top. Dev. Biol. 62, 37–54 (2004).

    CAS  PubMed  Google Scholar 

  63. Yeo, H. & Roman, S. Pheochromocytoma and functional paraganglioma. Curr. Opin. Oncol. 17, 13–18 (2005).

    PubMed  Google Scholar 

  64. Lopez-Barneo, J., del Toro, R., Levitsky, K. L., Chiara, M. D. & Ortega-Saenz, P. Regulation of oxygen sensing by ion channels. J. Appl. Physiol. 96, 1187–1195 (2004).

    CAS  PubMed  Google Scholar 

  65. Astrom, K., Cohen, J. E., Willett-Brozick, J. E., Aston, C. E. & Baysal, B. E. Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Hum. Genet. 113, 228–237 (2003). Shows that low oxygen-tension (high altitude) increases the penetrance and the severity of tumours with SDHD mutations. This is an independent confirmation of the phenotypic link between SDH dysfunction and pseudo-hypoxia.

    PubMed  Google Scholar 

  66. Baysal, B. E. Genomic imprinting and environment in hereditary paraganglioma. Am. J. Med. Genet. C. Semin. Med. Genet. 129, 85–90 (2004).

    Google Scholar 

  67. Gimenez-Roqueplo, A. P. et al. The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzy z-Roqueplo, A. P. et al. Functional consequences of a SDHB gene mutation in an apparently sporadic pheochromocytoma. J. Clin. Endocrinol. Metab. 87, 4771–4774 (2002).

    CAS  PubMed  Google Scholar 

  68. Pollard, P. J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14, 2231–2239 (2005).

    CAS  PubMed  Google Scholar 

  69. Dahia, P. L. M. et al. A HIF1α regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genetics 1, e8 (2005).

    PubMed Central  Google Scholar 

  70. Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143–153 (2005).

    CAS  PubMed  Google Scholar 

  71. Kim, W. Y. & Kaelin, W. G. Role of VHL gene mutation in human cancer. J. Clin. Oncol. 22, 4991–5004 (2004).

    CAS  PubMed  Google Scholar 

  72. Hoffman, M. A. et al. von Hippel–Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum. Mol. Genet. 10, 1019–1027 (2001).

    CAS  PubMed  Google Scholar 

  73. Clifford, S. C. et al. Contrasting effects on HIF-1α regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel–Lindau disease. Hum. Mol. Genet. 10, 1029–1038 (2001).

    CAS  PubMed  Google Scholar 

  74. Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nature Rev. Cancer 2, 38–47 (2002).

    CAS  Google Scholar 

  75. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).

    CAS  Google Scholar 

  76. Elstrom, R. L. et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64, 3892–3899 (2004).

    CAS  PubMed  Google Scholar 

  77. Sowter, H. M., Ratcliffe, P. J., Watson, P., Greenberg, A. H. & Harris, A. L. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res. 61, 6669–6673 (2001).

    CAS  PubMed  Google Scholar 

  78. Erler, J. T. et al. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol. Cell. Biol. 24, 2875–2889 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Blouw, B. et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4, 133–146 (2003).

    CAS  PubMed  Google Scholar 

  80. Safran, M. & Kaelin, W. G. Jr. HIF hydroxylation and the mammalian oxygen-sensing pathway. J. Clin. Invest. 111, 779–783 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nature Rev. Mol. Cell Biol. 5, 343–354 (2004).

    CAS  Google Scholar 

  82. Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138 (2000).

    CAS  PubMed  Google Scholar 

  83. Moeller, B. J., Cao, Y., Li, C. Y. & Dewhirst, M. W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5, 429–441 (2004).

    CAS  PubMed  Google Scholar 

  84. Gerald, D. et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118, 781–794 (2004). Gives biochemical evidence that ROS (hydrogen peroxide) can inhibit HIF PHD activity.

    CAS  PubMed  Google Scholar 

  85. Dalgard, C. L., Lu, H., Mohyeldin, A. & Verma, A. Endogenous 2-oxoacids differentially regulate expression of oxygen sensors. Biochem. J. 380, 419–424 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Colombini, M., Blachly-Dyson, E. & Forte, M. VDAC, a channel in the outer mitochondrial membrane. Ion Channels 4, 169–202 (1996).

    CAS  PubMed  Google Scholar 

  87. Palmieri, F. The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch. 447, 689–709 (2004).

    CAS  PubMed  Google Scholar 

  88. Butow, R. A. & Avadhani, N. G. Mitochondrial signaling: the retrograde response. Mol. Cell 14, 1–15 (2004).

    CAS  PubMed  Google Scholar 

  89. Marx, J. Cell biology. How cells endure low oxygen. Science 303, 1454–1456 (2004).

    CAS  PubMed  Google Scholar 

  90. Kaelin, W. G. Jr. ROS: really involved in oxygen sensing. Cell. Metab. 1, 357–358 (2005).

    CAS  PubMed  Google Scholar 

  91. Hutton, J. J. Jr, Tappel, A. L. & Udenfriend, S. Cofactor and substrate requirements of collagen proline hydroxylase. Arch. Biochem. Biophys. 118, 231–240 (1967).

    CAS  Google Scholar 

  92. Myllyla, R., Tuderman, L. & Kivirikko, K. I. Mechanism of the prolyl hydroxylase reaction. 2. Kinetic analysis of the reaction sequence. Eur. J. Biochem. 80, 349–357 (1977).

    CAS  PubMed  Google Scholar 

  93. Badenhop, R. F. et al. Novel mutations in the SDHD gene in pedigrees with familial carotid body paraganglioma and sensorineural hearing loss. Genes Chromosomes Cancer 31, 255–263 (2001).

    CAS  PubMed  Google Scholar 

  94. van Schothorst, E. M. et al. Paragangliomas of the head and neck region show complete loss of heterozygosity at 11q22–q23 in chief cells and the flow-sorted DNA aneuploid fraction. Hum. Pathol. 29, 1045–1049 (1998).

    CAS  PubMed  Google Scholar 

  95. Hensen, E. F. et al. Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene 23, 4076–4083 (2004).

    CAS  PubMed  Google Scholar 

  96. Raha, S. & Robinson, B. H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25, 502–508 (2000).

    CAS  PubMed  Google Scholar 

  97. Messner, K. R. & Imlay, J. A. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J. Biol. Chem. 277, 42563–42571 (2002).

    CAS  PubMed  Google Scholar 

  98. Paddenberg, R. et al. Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L710–L719 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ayala King, Mary Selak and Patricia Dahia for critical discussions and excellent editorial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyal Gottlieb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

ARNT1

ARNT2

FH

HIF1α

HIF2α

HIF3α

PHD

SDHA

SDHB

SDHC

SDHD

VEGF

National Cancer Institute

leiomyoma

paraganglioma

pheaochromocytoma

renal-cell carcinoma

OMIM

HLRCC

Leigh syndrome

MERRF

VHL

Entrez Structure

SDH

FURTHER INFORMATION

Mitochondrial disorders

Mitochondria Research Society

Glossary

PHAEOCHROMOCYTOMA

The most frequent subtype of paraganglioma that usually arises in the adrenal medulla and consists of catecholamine-secreting chromaffin cells.

PARAGANGLIOMA

Typically benign tumours of chromaffin cells arising from the paraganglial system. These are neuronal ectoderm-derived cells found in the sympathetic or parasympathetic nervous systems that run from the head and neck to the pelvis.

LEIOMYOMA

A benign tumour of smooth muscle in which parallel arrays of smooth muscle cells form bundles that are arranged in a whorled pattern. Leiomyoma of the uterus (fibroid) is the most common form.

MYOCLONUS EPILEPSY AND RAGGED-RED FIBRES SYNDROME

Maternally-inherited disorder caused by mutations in mitochondrial DNA. Several mitochondrial genes are involved, and the severity of the disease is dependent on the ratio between wild-type and mutant mitochondrial DNA molecules (heteroplasmy).

HEREDITARY PARAGANGLIOMA SYNDROME

Disease resulting from pathogenic germline mutations in the SDHB, SDHC or SDHD genes, characterized by paragangliomas (usually arising from the carotid body) and phaeochromocytomas (usually arising from the adrenal medulla).

LEIGH SYNDROME

An early-onset, progressive, neurodegenerative disorder with a characteristic neuropathology. The most common underlying cause is a defect in oxidative phosphorylation as a result of mutations in nuclear or mitochondrial genes.

CAROTID BODY

A small (3–5 mm), capillary-rich organ, attached to the carotid artery branches in the neck. The organ contains cells that sense oxygen and carbon dioxide levels in blood and are involved in the autonomic control of the respiratory and cardiovascular systems.

IMPRINTING

Monoallelic gene expression or inactivation of either the maternal or paternal allele of a particular locus.

NON-DISJUNCTION

Lack of the physiological separation of the two copies of each chromosome during cell division.

VON HIPPEL–LINDAU SYNDROME

A dominantly inherited familial cancer syndrome predisposing to various malignant and benign neoplasms, most often retinal, cerebellar and spinal hemangioblastoma, renal-cell carcinoma, phaeochromocytoma and pancreatic tumours.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottlieb, E., Tomlinson, I. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5, 857–866 (2005). https://doi.org/10.1038/nrc1737

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing