Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Polyamines and cancer: old molecules, new understanding

Key Points

  • Polyamines are naturally occurring organic cations found in plants, animals and microbes. They are formed by the enzymatic decarboxylation of the amino acids ornithine or arginine.

  • Ornithine decarboxylase (ODC) is the first enzyme in the polyamine synthesis pathway in mammals and is the target for difluoromethylornithine (DFMO), a substrate analogue and specific inhibitor that irreversibly inactivates ODC when it binds to the active site of the enzyme.

  • ODC and several other polyamine metabolic proteins are essential for normal cell and tissue functions, including growth, development and tissue repair. ODC and polyamine content are increased in many cancers arising from epithelial tissues, such as the skin and colon.

  • Polyamines exert their effects in eukaryotic cells in part by regulating specific gene expression.

  • In murine and human colonic mucosal tissue, ODC is negatively regulated by the adenomatous polyposis coli (APC) tumour-suppressor gene. APC is mutated or deleted in the germline of people with familial adenomatous polyposis (FAP), a genetic syndrome associated with a high risk of colon cancer. APC is also mutated or deleted in somatic colon epithelial cells in most sporadic, or non-genetic, forms of colon cancer.

  • Loss of APC function causes an increase in ODC activity and polyamine biosynthesis, and tumour formation in ApcMin/+ mice, a murine model of human FAP. Treatment of ApcMin/+ mice with DFMO suppresses intestinal tumour formation.

  • Several non-steroidal anti-inflammatory drugs (NSAIDs), the use of which is associated with decreased risk of epithelial cancers, activate the transcription of spermidine/spermine N1-acetyltransferase, the first enzyme in the polyamine catabolic pathway. Experimental studies indicate that combinations of DFMO and NSAIDs are potent inhibitors of colon and intestinal cancer development in murine models.

  • Clinical studies have shown that DFMO is well tolerated and can prevent the development of precancerous lesions in the skin. Several large randomized trials involving the skin, colon and other organ sites are underway.

Abstract

The amino-acid-derived polyamines have long been associated with cell growth and cancer, and specific oncogenes and tumour-suppressor genes regulate polyamine metabolism. Inhibition of polyamine synthesis has proven to be generally ineffective as an anticancer strategy in clinical trials, but it is a potent cancer chemoprevention strategy in preclinical studies. Clinical trials, with well-defined goals, are now underway to evaluate the chemopreventive efficacy of inhibitors of polyamine synthesis in a range of tissues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polyamine metabolism in mammals.
Figure 2: Regulation of polyamine metabolism by oncogenes and tumour-suppressor genes involved in the development of colon cancer.
Figure 3: Rationale for combination chemoprevention with inhibitors of polyamine synthesis and NSAIDs.

References

  1. Cohen, S. S. A Guide to the Polyamines. (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  2. Morris, S. M. Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr. 22, 87–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Bardocz, S. et al. The importance of dietary polyamines in cell regeneration and growth. Br. J. Nutr. 73, 819–828 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Milovic, V. Polyamines in the gut lumen: bioavailability and biodistribution. Eur. J. Gastroenterol. Hepatol. 13, 1021–1025 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Tabor, H., Hafner, E. W. & Tabor, C. W. Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase. J. Bacteriol. 144, 952–956 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tabor, C. W., Tabor, H., Tyagi, A. K. & Cohn, M. S. The biochemistry, genetics, and regulation of polyamine biosynthesis in Saccharomyces cerevisiae. Fed. Proc. 41, 3084–3088 (1982).

    CAS  PubMed  Google Scholar 

  7. Pendeville, H. et al. The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol. Cell. Biol. 21, 6549–6558 (2001). Showed that ODC is an essential gene in mammals and that lack of ODC function resulted in increased apoptosis in developing embryos.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang, Z. F. & Chen, K. Y. Regulation of ornithine decarboxylase and other cell cycle-dependent genes during senescence of IMR-90 human diploid fibroblasts. J. Biol. Chem. 263, 11431–11435 (1988).

    CAS  PubMed  Google Scholar 

  9. Gerner, E. W., Garewal, H. S., Emerson, S. S. & Sampliner, R. E. Gastrointestinal tissue polyamine contents of patients with Barrett's esophagus treated with α-difluoromethylornithine. Cancer Epidemiol. Biomarkers Prev. 3, 325–330 (1994).

    CAS  PubMed  Google Scholar 

  10. Russell, D. & Snyder, S. H. Amine synthesis in rapidly growing tissues: ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various tumors. Proc. Natl Acad. Sci. USA 60, 1420–1427 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andersson, G. & Heby, O. Polyamine and nucleic acid concentrations in Ehrlich ascites carcinoma cells and liver of tumor-bearing mice at various stages of tumor growth. J. Natl Cancer Inst. 48, 165–172 (1972).

    CAS  PubMed  Google Scholar 

  12. Wallace, H. M. & Caslake, R. Polyamines and colon cancer. Eur. J. Gastroenterol. Hepatol. 13, 1033–1039 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. O'Brien, T. G., Simsiman, R. C. & Boutwell, R. K. Induction of the polyamine-biosynthetic enzymes in mouse epidermis by tumor-promoting agents. Cancer Res. 35, 1662–1670 (1975).

    CAS  PubMed  Google Scholar 

  14. Ahmad, N., Gilliam, A. C., Katiyar, S. K., O'Brien, T. G. & Mukhtar, H. A definitive role of ornithine decarboxylase in photocarcinogenesis. Am. J. Pathol. 159, 885–892 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marsh, J. P. & Mossman, B. T. Role of asbestos and active oxygen species in activation and expression of ornithine decarboxylase in hamster tracheal epithelial cells. Cancer Res. 51, 167–173 (1991).

    CAS  PubMed  Google Scholar 

  16. Crozat, A., Palvimo, J. J., Julkunen, M. & Janne, O. A. Comparison of androgen regulation of ornithine decarboxylase and S-adenosylmethionine decarboxylase gene expression in rodent kidney and accessory sex organs. Endocrinology 130, 1131–1144 (1992).

    CAS  PubMed  Google Scholar 

  17. Mohan, R. R. et al. Overexpression of ornithine decarboxylase in prostate cancer and prostatic fluid in humans. Clin. Cancer Res. 5, 143–147 (1999).

    CAS  PubMed  Google Scholar 

  18. Meyskens, F. L. Jr. & Gerner, E. W. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin. Cancer Res. 5, 945–951 (1999).

    CAS  PubMed  Google Scholar 

  19. Thomas, T., Faaland, C. A., Adhikarakunnathu, S. & Thomas, T. J. Structure-activity relations of S-adenosylmethionine decarboxylase inhibitors on the growth of MCF-7 breast cancer cells. Breast Cancer Res. Treat. 39, 293–306 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Casero, R. A. Jr. et al. The role of polyamine catabolism in anti-tumour drug response. Biochem. Soc. Trans. 31, 361–365 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Eskens, F. A. et al. Phase I and pharmacological study of weekly administration of the polyamine synthesis inhibitor SAM 486A (CGP 48 664) in patients with solid tumors. European Organization for Research and Treatment of Cancer Early Clinical Studies Group. Clin. Cancer Res. 6, 1736–1743 (2000).

    CAS  PubMed  Google Scholar 

  22. Wolff, A. C. et al. A Phase II study of the polyamine analog N1,N11-diethylnorspermine (DENSpm) daily for five days every 21 days in patients with previously treated metastatic breast cancer. Clin. Cancer Res. 9, 5922–5928 (2003).

    CAS  PubMed  Google Scholar 

  23. Giardiello, F. M. et al. Ornithine decarboxylase and polyamines in familial adenomatous polyposis. Cancer Res. 57, 199–201 (1997). Showed that colonic ODC activity and polyamine levels were increased in patients with FAP, a genetic form of colon cancer.

    CAS  PubMed  Google Scholar 

  24. Groden, J. et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Kinzler, K. W. et al. Identification of FAP locus genes from chromosome 5q21. Science 253, 661–665 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Iwamoto, M., Ahnen, D. J., Franklin, W. A. & Maltzman, T. H. Expression of β-catenin and full-length APC protein in normal and neoplastic colonic tissues. Carcinogenesis 21, 1935–1940 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. He, T. C. et al. (1998) Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  28. Boyd, K. E. & Farnham, P. J. Identification of target genes of oncogenic transcription factors. Proc. Soc. Exp. Biol. Med. 222, 9–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Hermeking, H. The MYC oncogene as a cancer drug target. Curr. Cancer Drug Targets 3, 163–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Bello-Fernandez, C., Packham, G. & Cleveland, J. L. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc. Natl Acad. Sci. USA 90, 7804–7808 (1993). Showed that ODC is a transcriptional target of the MYC oncogene

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pena, A. et al. Regulation of human ornithine decarboxylase expression by the c-Myc.Max protein complex. J. Biol. Chem. 268, 27277–27285 (1993).

    CAS  PubMed  Google Scholar 

  32. Erdman, S. H. et al. APC-dependent changes in expression of genes influencing polyamine metabolism, and consequences for gastrointestinal carcinogenesis, in the Min mouse. Carcinogenesis 20, 1709–1713 (1999). Demonstrated that ODC RNA was upregulated, OAZ RNA was downregulated and intestinal polyamine content increased as a consequence of loss of wild-type APC in a mouse model.

    Article  CAS  PubMed  Google Scholar 

  33. Fultz, K. E. & Gerner, E. W. APC-dependent regulation of ornithine decarboxylase in human colon tumor cells. Mol. Carcinog. 34, 10–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Shantz, L. M. & Pegg, A. E. Ornithine decarboxylase induction in transformation by H-Ras and RhoA. Cancer Res. 58, 2748–2753 (1998).

    CAS  PubMed  Google Scholar 

  35. Smith, M. K., Trempus, C. S. & Gilmour, S. K. Co-operation between follicular ornithine decarboxylase and v-Ha-ras induces spontaneous papillomas and malignant conversion in transgenic skin. Carcinogenesis 19, 1409–1415 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Ignatenko, N. A., Babbar, N., Mehta, D., Casero, R. A. Jr & Gerner, E. W. Suppression of polyamine catabolism by activated Ki-ras in human colon cancer cells. Mol. Carcinog. 39, 91–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Babbar, N., Ignatenko, N. A., Casero, R. A. Jr & Gerner, E. W. Cyclooxygenase-independent induction of apoptosis by sulindac sulfone is mediated by polyamines in colon cancer. J. Biol. Chem. 278, 47762–47775 (2003). Established SSAT as a transcriptional target of the PPARγ tumour suppressor and showed that the sulphone metabolite of the NSAID sulindac induced SSAT transcription by activating PPARγ.

    Article  CAS  PubMed  Google Scholar 

  38. Bai, G. et al. Androgen regulation of the human ornithine decarboxylase promoter in prostate cancer cells. J. Androl. 19, 127–135 (1998).

    CAS  PubMed  Google Scholar 

  39. De Benedetti, A. & Harris, A. L. eIF4E expression in tumors: its possible role in progression of malignancies. Int. J. Biochem. Cell Biol. 31, 59–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Martinez, M. E. et al. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene. Proc. Natl Acad. Sci. USA 100, 7859–7864 (2003). Showed that an SNP in the ODC promoter was associated, with reduced risk of colon-polyp recurrence in people reporting aspirin use. Provided evidence that the ODC SNP reduced polyamine synthesis, while aspirin induced polyamine catabolism and export, thereby reducing polyamine levels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ignatenko, N. A. et al. The chemopreventive agent α-difluoromethylornithine blocks K-ras dependent tumor formation and specific gene expression in Caco-2 cells. Mol. Carcinog. 39, 221–233 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Brzozowski, T., Konturek, S. J., Drozdowicz, D., Dembinski, A. & Stachura, J. Healing of chronic gastric ulcerations by L-arginine. Role of nitric oxide, prostaglandins, gastrin and polyamines. Digestion. 56, 463–471 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Xie, X., Tome, M. E. & Gerner, E. W. Loss of intracellular putrescine pool-size regulation induces apoptosis. Exp. Cell Res. 230, 386–392 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Erez, O., Goldstaub, D., Friedman, J. & Kahana, C. Putrescine activates oxidative stress dependent apoptotic death in ornithine decarboxylase overproducing mouse myeloma cells. Exp. Cell Res. 281, 148–156 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Takigawa, M. et al. Tumor angiogenesis and polyamines: α-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, inhibits B16 melanoma-induced angiogenesis in ovo and the proliferation of vascular endothelial cells in vitro. Cancer Res. 50, 4131–4138 (1990).

    CAS  PubMed  Google Scholar 

  46. Takahashi, Y., Mai, M. & Nishioka, K. α-difluoromethylornithine induces apoptosis as well as anti-angiogenesis in the inhibition of tumor growth and metastasis in a human gastric cancer model. Int. J. Cancer 85, 243–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Bauer, P. M., Buga, G. M., Fukuto, J. M., Pegg, A. E. & Ignarro, L. J. Nitric oxide inhibits ornithine decarboxylase via S-nitrosylation of cysteine 360 in the active site of the enzyme. J. Biol. Chem. 276, 34458–34464 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Buga, G. M., Wei, L. H., Bauer, P. M., Fukuto, J. M. & Ignarro, L. J. (1998) NG-hydroxy-L-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms. Am. J. Physiol. 275, R1256–R1264.

  49. Itoh, M. & Bissell, M. J. The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigenesis. J. Mammary Gland Biol. Neoplasia 8, 449–462 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Trosko, J. E. The role of stem cells and gap junctional intercellular communication in carcinogenesis. J. Biochem. Mol. Biol. 36, 43–48 (2003).

    CAS  PubMed  Google Scholar 

  51. Guo, X. et al. Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines. Am. J. Physiol. Cell Physiol. 285, C1174–C1187 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Shore, L., McLean, P., Gilmour, S. K., Hodgins, M. B. & Finbow, M. E. Polyamines regulate gap junction communication in connexin 43-expressing cells. Biochem. J. 357, 489–495 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pegg, A. E. et al. Transgenic mouse models for studies of the role of polyamines in normal, hypertrophic and neoplastic growth. Biochem. Soc. Trans. 31, 356–360 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Williams-Ashman, H. G. & Schenone, A. Methyl glyoxal bis(guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylases. Biochem. Biophys. Res. Commun. 46, 288–295 (1972).

    Article  CAS  PubMed  Google Scholar 

  55. Mamont, P. S. et al. α-methyl ornithine, a potent competitive inhibitor of ornithine decarboxylase, blocks proliferation of rat hepatoma cells in culture. Proc. Natl Acad. Sci. USA 73, 1626–1630 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bey, P. et al. Analogues of ornithine as inhibitors of ornithine decarboxylase. New deductions concerning the topography of the enzyme's active site. J. Med. Chem. 21, 50–55 (1978).

    Article  CAS  PubMed  Google Scholar 

  57. Doua, F. & Yapo, F. B. Human trypanosomiasis in the Ivory Coast: therapy and problems. Acta Trop. 54, 163–168 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Seiler, N. Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 1. Selective enzyme inhibitors. Curr. Drug Targets 4, 537–564 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Bitonti, A. J. et al. Bis(benzyl)polyamine analogs as novel substrates for polyamine oxidase. J. Biol. Chem. 265, 382–388 (1990).

    CAS  PubMed  Google Scholar 

  60. Seiler, N., Duranton, B. & Raul, F. The polyamine oxidase inactivator MDL 72527. Prog. Drug Res. 59, 1–40 (2002).

    CAS  PubMed  Google Scholar 

  61. Mamont, P. S., Claverie, N. & Gerhart, F. Fluorine-containing polyamines: biochemistry and potential applications. Adv. Exp. Med. Biol. 250, 691–706 (1988).

    Article  CAS  PubMed  Google Scholar 

  62. McCann, P. P. & Pegg, A. E. Ornithine decarboxylase as an enzyme target for therapy. Pharmacol. Ther. 54, 195–215 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. McCann, P. P., Pegg, A. E. & Sjoerdsma, A. Inhibition of Polyamine Metabolism, Biological Significance and Basis for New Therapies (Academic, Orlando, 1987).

    Google Scholar 

  64. Lawson, K. R., Ignatenko, N. A., Piazza, G. A., Cui, H. & Gerner, E. W. Influence of K-ras activation on the survival responses of Caco-2 cells to the chemopreventive agents sulindac and difluoromethylornithine. Cancer Epidemiol. Biomarkers Prev. 9, 1155–1162 (2000).

    CAS  PubMed  Google Scholar 

  65. Weeks, C. E., Herrmann, A. L., Nelson, F. R. & Slaga, T. J. α-Difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, inhibits tumor promoter-induced polyamine accumulation and carcinogenesis in mouse skin. Proc. Natl Acad. Sci. USA 79, 6028–6032 (1982). Demonstrated that DFMO inhibited chemically induced skin carcinogenesis by a mechanism affecting tumour promotion. Provided the first evidence from animal models supporting the rationale for DFMO as a chemopreventive agent.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Meyskens, F. L. Jr et al. Effect of α-difluoromethylornithine on rectal mucosal levels of polyamines in a randomized, double-blinded trial for colon cancer prevention. J. Natl Cancer Inst. 90, 1212–1218 (1998). Demonstrated the safety of DFMO and its potent biochemical effect on polyamine content in human colon tissue over a 1-year period; a critical study for planning of Phase III trials.

    Article  CAS  PubMed  Google Scholar 

  67. Rao, C. V., Tokumo, K., Rigotty, J., Zang, E., Kelloff, G. & Reddy, B. S. Chemoprevention of colon carcinogenesis by dietary administration of piroxicam, α-difluoromethylornithine, 16 α-fluoro-5-androsten-17-one, and ellagic acid individually and in combination. Cancer Res. 51, 4528–4534 (1991).

    CAS  PubMed  Google Scholar 

  68. Croghan, M. K., Aickin, M. G. & Meyskens, F. L. Dose-related α-difluoromethylornithine ototoxicity. Am. J. Clin. Oncol. 14, 331–335 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Pasic, T. R., Heisey, D. & Love, R. R. α-difluoromethylornithine ototoxicity. Chemoprevention clinical trial results. Arch. Otolaryngol. Head Neck Surg. 123, 1281–1286 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Doyle, K. J., McLaren, C. E., Shanks, J. E., Galus, C. M. & Meyskens, F. L. Effects of difluoromethylornithine chemoprevention on audiometry thresholds and otoacoustic emissions. Arch. Otolaryngol. Head Neck Surg. 127, 553–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Mitchell, M. F. et al. Phase I dose de-escalation trial of α-difluoromethylornithine in patients with grade 3 cervical intraepithelial neoplasia. Clin. Cancer Res. 4, 303–310 (1998).

    CAS  PubMed  Google Scholar 

  72. Carbone, P. P. et al. Phase I chemoprevention study of difluoromethylornithine in subjects with organ transplants. Cancer Epidemiol. Biomarkers Prev. 10, 657–661 (2001).

    CAS  PubMed  Google Scholar 

  73. Love, R. R. et al. Randomized phase I chemoprevention dose-seeking study of α-difluoromethylornithine. J. Natl Cancer Inst. 85, 732–737 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Alberts, D. S. et al. Chemoprevention of human actinic keratoses by topical 2-(difluoromethyl)-dl-ornithine. Cancer Epidemiol. Biomarkers Prev. 9, 1281–1286 (2000). Clinical study showing efficacy of DFMO in the treatment of actinic keratoses in humans.

    CAS  PubMed  Google Scholar 

  75. Boyle, J. O., Meyskens, F. L. Jr, Garewal, H. S. & Gerner, E. W. Polyamine contents in rectal and buccal mucosae in humans treated with oral difluoromethylornithine. Cancer Epidemiol. Biomarkers Prev. 1, 131–135 (1992).

    CAS  PubMed  Google Scholar 

  76. Simoneau, A. R., Gerner, E. W., Phung, M., McLaren, C. E. & Meyskens, F. L. Jr. α-difluoromethylornithine and polyamine levels in the human prostate: results of a phase IIa trial. J. Natl Cancer Inst. 93, 57–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Fabian, C. J. et al. A phase II breast cancer chemoprevention trial of oral α-difluoromethylornithine: breast tissue, imaging, and serum and urine biomarkers. Clin. Cancer Res. 8, 3105–3117 (2002).

    CAS  PubMed  Google Scholar 

  78. Meyskens, F. L. Jr et al. Dose de-escalation chemoprevention trial of α-difluoromethylornithine in patients with colon polyps. J. Natl Cancer Inst. 86, 1122–1130 (1994). Clinical study that used a novel dose de-escalation design to identify the lowest does of DFMO that still caused the desired biochemical effect (polyamine depletion) in the target tissue.

    Article  PubMed  Google Scholar 

  79. Levy, G. N. Prostaglandin H synthases, nonsteroidal anti-inflammatory drugs, and colon cancer. FASEB J. 11, 234–247 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Oshima, M. et al. Suppression of intestinal polyposis in Apc δ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell, 87, 803–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Phillips, R. K. et al. A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut 50, 857–860 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bishop-Bailey, D., Calatayud, S., Warner, T. D., Hla, T. & Mitchell, J. A. Prostaglandins and the regulation of tumor growth. J. Environ. Pathol. Toxicol. Oncol. 21, 93–101 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Hughes, A., Smith, N. I. & Wallace, H. M. Polyamines reverse non-steroidal anti-inflammatory drug-induced toxicity in human colorectal cancer cells. Biochem. J. 374, 481–488 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jacoby, R. F. et al. Chemopreventive efficacy of combined piroxicam and difluoromethylornithine treatment of Apc mutant Min mouse adenomas, and selective toxicity against Apc mutant embryos. Cancer Res. 60, 1864–1870 (2000).

    CAS  PubMed  Google Scholar 

  85. Meyskens, F. L. Jr et al. Enhancement of regression of cervical intraepithelial neoplasia II (moderate dysplasia) with topically applied all-trans-retinoic acid: a randomized trial. J. Natl Cancer Inst. 86, 539–543 (1994).

    Article  PubMed  Google Scholar 

  86. Hong, W. K. et al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 323, 795–801 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Fisher, B. et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl Cancer Inst. 90, 1371–1388 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Mitchell, J. L., Hoff, J. A. & Bareyal-Leyser, A. Stable ornithine decarboxylase in a rat hepatoma cell line selected for resistance to α-difluoromethylornithine. Arch. Biochem. Biophys. 290, 143–152 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Meyskens, F. L. Jr & Szabo, E. How should we move the field of chemoprevention agent development forward in a productive manner. Eur. J. Cancer (in the press).

  90. Levin, V. A. et al. Phase III randomized study of postradiotherapy chemotherapy with combination α-difluoromethylornithine-PCV versus PCV for anaplastic gliomas. Clin. Cancer Res. 9, 981–990 (2003).

    CAS  PubMed  Google Scholar 

  91. Lux, G. D., Marton, L. J. & Baylin, S. B. Ornithine decarboxylase is important in intestinal mucosal maturation and recovery from injury in rats. Science 210, 195–198 (1980). Showed the importance of polyamines in normal intestinal development and repair of damage.

    Article  CAS  PubMed  Google Scholar 

  92. Yarrington, J. T. et al. Intestinal changes caused by DL-α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase. Exp. Mol. Pathol. 39, 300–316 (1983).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, J. Y. & Johnson, L. R. Luminal polyamines stimulate repair of gastric mucosal stress ulcers. Am. J. Physiol. 259, G584–G592 (1990).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, J. Y. & Johnson, L. R. Polyamines and ornithine decarboxylase during repair of duodenal mucosa after stress in rats. Gastroenterology 100, 333–343 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Babal, P., Manuel, S. M., Olson, J. W. & Gillespie, M. N. Cellular disposition of transported polyamines in hypoxic rat lung and pulmonary arteries. Am. J. Physiol. Lung Cell Mol. Physiol. 278, L610–L617 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Ahuja, V., Tantry, U., Park, J. & Barbul, A. Effect of difluoromethylornitine,a chemotherapeutic agent, on wound healing. J. Surg. Res. 114, 308–309 (2003).

    Article  Google Scholar 

  97. Calandra, R. S., Rulli, S. B., Frungieri, M. B., Suescun, M. O. & Gonzalez-Calvar, S. I. Polyamines in the male reproductive system. Acta Physiol. Pharmacol. Ther. Latinoam. 46, 209–222 (1996).

    CAS  PubMed  Google Scholar 

  98. Guha, S. K. & Janne, J. Decarboxylation of ornithine and adenosymethionine in rat ovary during pregnancy. Acta Endocrinol. (Copenh.) 81, 793–800 (1976).

    Article  CAS  Google Scholar 

  99. Hoshiai, H., Lin, Y. C., Loring, J. M., Perelle, B. A. & Villee, C. A. Ornithine decarboxylase activity and polyamine content of the placenta and decidual tissue in the rat. Placenta 2, 105–116 (1981).

    Article  CAS  PubMed  Google Scholar 

  100. Min, S. H. et al. Altered levels of growth-related and novel gene transcripts in reproductive and other tissues of female mice overexpressing spermidine/spermine N1-acetyltransferase (SSAT). J. Biol. Chem. 277, 3647–3657 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Humphreys, M. H., Etheredge, S. B., Lin, S. Y., Ribstein, J. & Marton, L. J. Renal ornithine decarboxylase activity, polyamines, and compensatory renal hypertrophy in the rat. Am. J. Physiol. 255, F270–F277 (1988).

    CAS  PubMed  Google Scholar 

  102. Mackintosh, C. A., Feith, D. J., Shantz, L. M. & Pegg, A. E. Overexpression of antizyme in the hearts of transgenic mice prevents the isoprenaline-induced increase in cardiac ornithine decarboxylase activity and polyamines, but does not prevent cardiac hypertrophy. Biochem. J. 350, 645–653 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Park, M. H., Lee, Y. B. & Joe, Y. A. Hypusine is essential for eukaryotic cell proliferation. Biol. Signals 6, 115–123 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Schnier, J., Schwelberger, H. G., Smit-McBride, Z., Kang, H. A. & Hershey, J. W. Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 3105–3114 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kang, H. A. & Hershey, J. W. Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. J. Biol. Chem. 269, 3934–3940 (1994).

    CAS  PubMed  Google Scholar 

  106. Tome, M. E., Fiser, S. M., Payne, C. M. & Gerner, E. W. Excess putrescine accumulation inhibits the formation of modified eukaryotic initiation factor 5A (eIF-5A) and induces apoptosis. Biochem. J. 328, 847–854 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bevec, D. & Hauber, J. Eukaryotic initiation factor 5A activity and HIV-1 Rev function. Biol. Signals 6, 124–133 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Zuk, D. & Jacobson, A. A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J. 17, 2914–2925 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hayashi, S., Murakami, Y. & Matsufuji, S. Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem. Sci. 21, 27–30 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Matsufuji, S., Matsufuji, T., Wills, N. M., Gesteland, R. F. & Atkins, J. F. Reading two bases twice: mammalian antizyme frameshifting in yeast. EMBO J. 15, 1360–1370 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tsuji, T. et al. Induction of epithelial differentiation and DNA demethylation in hamster malignant oral keratinocyte by ornithine decarboxylase antizyme. Oncogene 20, 24–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Casero, R. A. Jr & Pegg, A. E. Spermidine/spermine N1-acetyltransferase: the turning point in polyamine metabolism. FASEB J. 7, 653–661 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Thomas, T. & Thomas, T. J. Polyamine metabolism and cancer. J. Cell. Mol. Med. 7, 113–126 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Eimer, S., Lakowski, B., Donhauser, R. & Baumeister, R. Loss of spr-5 bypasses the requirement for the C. elegans presenilin sel-12 by derepressing hop-1. EMBO J. 21, 5787–5796 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hixson, L. J., Emerson, S. S., Shassetz, L. R. & Gerner, E. W. Sources of variability in estimating ornithine decarboxylase activity and polyamine contents in human colorectal mucosa. Cancer Epidemiol. Biomarkers Prev. 3, 317–323 (1994).

    CAS  PubMed  Google Scholar 

  116. Xie, X., Gillies, R. J. & Gerner, E. W. Characterization of a diamine exporter in Chinese hamster ovary cells and identification of specific polyamine substrates. J. Biol. Chem. 272, 20484–20489 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, Y. et al. Properties of purified recombinant human polyamine oxidase, PAOh1/SMO. Biochem. Biophys. Res. Commun. 304, 605–611 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Cornbleet, M. A. et al. Phase I study of methylacetylenic putrescine, an inhibitor of polyamine biosynthesis. Cancer Chemother. Pharmacol. 23, 348–352 (1989).

    Article  CAS  PubMed  Google Scholar 

  119. Gastaut, J. A. et al. Treatment of acute myeloid leukemia and blastic phase of chronic myeloid leukemia with combined eflornithine (α difluoromethylornithine) and methylglyoxal-bis-guanyl hydrazone (methyl-GAG). Cancer Chemother. Pharmacol. 20, 344–348 (1987).

    Article  CAS  PubMed  Google Scholar 

  120. Wilding, G. et al. Phase I trial of the polyamine analog N1,N14-diethylhomospermine (DEHSPM) in patients with advanced solid tumors. Invest. New Drugs 22, 131–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank K. Nicolini and M. L. Myers for editorial assistance. The work described in this review was supported in part by grants from the United States Public Health Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene W. Gerner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

bladder cancer

breast cancer

cervical cancer

colon cancer

prostate cancer

skin cancer

Entrez Gene

APC

COX2

eIF4E

KRAS

MAD1

MYC

OAZ

ODC

PAO

PPARγ

OMIM

Barrett's oesophagus

Burkitt's lymphoma

familial adenomatous polyposis

FURTHER INFORMATION

Frank Meysken's home page

Arizona Cancer Center Specialized Program of Research Excellence

MD Anderson Cancer Center chemoprevention trial with DFMO

MD Anderson Cancer Center chemoprevention trial with DFMO and celecoxib

University of California, Irvine, chemoprevention trial with DFMO and sulindac

University of Rochester chemoprevention trial with DFMO

University of Wisconsin Comprehensive Cancer Center trials

Glossary

UREA CYCLE

The key metabolic pathway in mammals for eliminating cellular breakdown products containing nitrogen.

PROTEASOMAL DEGRADATION

Degradation of proteins involving the proteasome, a 26S multiprotein complex that catalyses the breakdown of polyubiquitylated proteins. Ornithine decarboxylase is the only non-ubiquitylated protein known to be degraded by the 26S proteasome.

SINGLE-NUCLEOTIDE POLYMORPHISMS

(SNPs). Single-base-pair changes in DNA that differ among individuals.

COLON POLYP

Non-invasive but neoplastic growths that develop from normal colon mucosa and that can develop into colon cancer.

TIGHT JUNCTIONS

Intercellular junctions that act as barriers to specific tissue processes.

GAP JUNCTIONS

The most widespread type of intercellular junction, involved in coupling cells both electrically and metabolically.

RIBOSOME

Particles composed of RNA and protein that are sites of protein synthesis.

PURE TONE

A single frequency tone measured as part of clinical audiometric evaluations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerner, E., Meyskens, F. Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4, 781–792 (2004). https://doi.org/10.1038/nrc1454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1454

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing