Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Angiogenesis

Basement membranes: structure, assembly and role in tumour angiogenesis

Key Points

  • Vascular basement membranes (BMs) are important structural and functional components of all blood vessels/capillaries and have a crucial role in determining the progression of cancer.

  • Constituents of vascular BMs, such as type IV collagen, laminin, SPARC and perlecan, have emerged as key regulators of angiogenesis.

  • Type IV collagen and laminin can exert both positive and negative regulation of angiogenesis, depending on their structural integrity and assembly.

  • Cryptic domains of type IV collagen can be liberated by proteolytic enzymes, such as matrix metalloproteinases, to expose novel integrin binding sites and angiogenesis inhibitory sequences.

  • Arrestin, canstatin, tumstatin and endostatin are novel BM-derived endogenous inhibitors of angiogenesis.

  • Not all vascular BMs are the same, providing a novel tissue-specific regulation of endothelial-cell behaviour and possibly the rate of cancer progression in a given organ.

Abstract

In recent years, the basement membrane (BM) — a specialized form of extracellular matrix (ECM) — has been recognized as an important regulator of cell behaviour, rather than just a structural feature of tissues. The BM mediates tissue compartmentalization and sends signals to epithelial cells about the external microenvironment. The BM is also an important structural and functional component of blood vessels, constituting an extracellular microenvironment sensor for endothelial cells and pericytes. Vascular BM components have recently been found to be involved in the regulation of tumour angiogenesis, making them attractive candidate targets for potential cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic structure of BM and its major constituents.
Figure 2: Schematic illustration of a BM scaffold formation outside the cell.
Figure 3: Matrix transitions during angiogenesis.
Figure 4: Integrin binding sites on various BM molecules.
Figure 5: Endogenous angiogenesis inhibitors derived from type IV collagen and type XVIII collagens.

Similar content being viewed by others

References

  1. Vracko, R. Significance of basal lamina for regeneration of injured lung. Virchows Arch. A. Pathol. Pathol. Anat. 355, 264–274 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Vracko, R. & Strandness, D. E. Jr. Basal lamina of abdominal skeletal muscle capillaries in diabetics and nondiabetics. Circulation 35, 690–700 (1967).

    Article  CAS  PubMed  Google Scholar 

  3. Vracko, R. & Benditt, E. P. Basal lamina: the scaffold for orderly cell replacement. Observations on regeneration of injured skeletal muscle fibers and capillaries. J. Cell Biol. 55, 406–419 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vracko, R. & Benditt, E. P. Capillary basal lamina thickening. Its relationship to endothelial cell death and replacement. J. Cell Biol. 47, 281–285 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vracko, R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am. J. Pathol. 77, 314–346 (1974). This paper, along with references 1–4 and 33, was important in establishing the structure of the basement membrane as a distinct structure, by use of the transmission electron microscope.

    CAS  PubMed  Google Scholar 

  6. Ruben, G. C. & Yurchenco, P. D. High resolution platinum-carbon replication of freeze-dried basement membrane. Microsc. Res. Tech. 28, 13–28 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Prockop, D. J. & Kivirikko, K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64, 403–434 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Timpl, R. Structure and biological activities of basement membrane proteins. Eur. J. Biochem. 180, 487–502 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Timpl, R. Recent advances in the biochemistry of glomerular basement membrane. Kidney Int. 30, 293 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Paulsson, M. Basement membrane proteins: structure, assembly, and cellular interaction. Crit. Rev. Biochem. Mol. Biol. 27, 93–127 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Schittny, J. C. & Yurchenco, P. D. Basement membranes: molecular organization and function in development and disease. Curr. Opin. Cell Biol. 1, 983–988 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Aumailley, M. & Timpl, R. Attachment of cells to basement membrane collagen type IV. J. Cell Biol. 103, 1569 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Yurchenco, P. D., Tsilibary, E. C., Charonis, A. S. & Furthmayr, H. Models for the self-assembly of basement membrane. J. Histochem. Cytochem. 34, 93–102 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Yurchenco, P. D. & Ruben, G. C. Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J. Cell Biol. 105, 2559–2568 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Yurchenco, P. D., Smirnov, S. & Mathus, T. Analysis of basement membrane self-assembly and cellular interactions with native and recombinant glycoproteins. Methods Cell Biol. 69, 111–144 (2002). Highlights the use of recombinant laminin in assembly studies. Along with references 13 and 14, it provides the most compelling evidence of how laminins and collagens assemble.

    Article  CAS  PubMed  Google Scholar 

  16. Cheng, Y. S., Champliaud, M. F., Burgeson, R. E., Marinkovich, M. P. & Yurchenco, P. D. Self-assembly of laminin isoforms. J. Biol. Chem. 272, 31525–31532 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Yurchenco, P. D. & O'Rear, J. J. Basal lamina assembly. Curr. Opin. Cell Biol. 6, 674–681 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Yurchenco, P. D. & O'Rear, J. J. Basement membrane assembly. Methods Enzymol. 245, 489–518 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Yurchenco, P. D. & Schittny, J. C. Molecular architecture of basement membranes. FASEB J. 4, 1577–1590 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Barnard, K., Burgess, S. A., Carter, D. A. & Woolley, D. M. Three-dimensional structure of type IV collagen in the mammalian lens capsule. J. Struct. Biol. 108, 6–13 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Yurchenco, P. D. & Furthmayr, H. Self-assembly of basement membrane collagen. Biochemistry 23, 1839–1850 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Yurchenco, P. D., Tsilibary, E. C., Charonis, A. S. & Furthmayr, H. Models for the self-assembly of basement membrane. J. Histochem. Cytochem. 34, 93–102 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Hudson, B. G., Reeders, S. T. & Tryggvason, K. Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J. Biol. Chem. 268, 26033–26036 (1993). A solid review in the area of type IV collagen biology and pathology.

    Article  CAS  PubMed  Google Scholar 

  24. Barker, D. F. et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248, 1224–1227 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Hudson, B. G. et al. The pathogenesis of Alport syndrome involves type IV collagen molecules containing the alpha 3(IV) chain: evidence from anti-GBM nephritis after renal transplantation. Kidney Int. 42, 179–187 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Cosgrove, D. et al. Integrin alpha1beta1 and transforming growth factor-beta1 play distinct roles in alport glomerular pathogenesis and serve as dual targets for metabolic therapy. Am. J. Pathol. 157, 1649–1659 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cosgrove, D. et al. Collagen COL4A3 knockout: a mouse model for autosomal Alport syndrome. Genes Dev. 10, 2981–2992 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Kalluri, R., Shield, C. F., Todd, P., Hudson, B. G. & Neilson, E. G. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J. Clin. Invest. 99, 2470–2478 (1997). A key paper that illustrates how structural instability of BMs can lead to disease pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalluri, R. Goodpasture syndrome. Kidney Int. 55, 1120–1122 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Kalluri, R., Danoff, T. M., Okada, H. & Neilson, E. G. Susceptibility to anti-glomerular basement membrane disease and Goodpasture syndrome is linked to MHC class II genes and the emergence of T cell-mediated immunity in mice.. J. Clin. Invest. 100, 2263–2275 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kalluri, R., Gattone, V. H. Jr, Noelken, M. E. & Hudson, B. G. The α3(IV) chain of type IV collagen induces autoimmune Goodpasture Syndrome. Proc. Natl Acad. Sci. USA 91, 6201–6205 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Butkowski, R. J., Langeveld, J. P., Wieslander, J., Hamilton, J. & Hudson, B. G. Localization of the Goodpasture epitope to a novel chain of basement membrane collagen. J. Biol. Chem. 262, 7874–7877 (1987). First paper to identify the α3 chain of type IV collagen, a precursor to tumstatin.

    Article  CAS  PubMed  Google Scholar 

  33. Vracko, R., Thorning, D. & Huang, T. W. Basal lamina of alveolar epithelium and capillaries: quantitative changes with aging and in diabetes mellitus. Am. Rev. Respir. Dis. 120, 973–983 (1979).

    CAS  PubMed  Google Scholar 

  34. Thorning, D. & Vracko, R. Renal glomerular basal lamina scaffold: embryologic development, anatomy, and role in cellular reconstruction of rat glomeruli injured by freezing and thawing. Lab. Invest. 37, 105–119 (1977).

    Article  CAS  PubMed  Google Scholar 

  35. Orkin, R. W. et al. A murine tumor producing a matrix of basement membrane. J. Exp. Med. 145, 204–220 (1977).

    Article  CAS  PubMed  Google Scholar 

  36. Kleinman, H. K. et al. Basement membrane complexes with biological activity. Biochemistry 25, 312–318 (1986).

    Article  CAS  PubMed  Google Scholar 

  37. Baron-Van Evercooren, A., Gansmuller, A., Gumpel, M., Baumann, N. & Kleinman, H. K. Schwann cell differentiation in vitro: extracellular matrix deposition and interaction. Dev. Neurosci. 8, 182–196 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. Grant, D. S. et al. The basement-membrane-like matrix of the mouse EHS tumor: II. Immunohistochemical quantitation of six of its components. Am. J. Anat. 174, 387–398 (1985).

    Article  CAS  PubMed  Google Scholar 

  39. Hadley, M. A., Byers, S. W., Suarez-Quian, C. A., Kleinman, H. K. & Dym, M. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J. Cell Biol. 101, 1511–1522 (1985).

    Article  CAS  PubMed  Google Scholar 

  40. Kleinman, H. K. et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21, 6188–6193 (1982).

    Article  CAS  PubMed  Google Scholar 

  41. Timpl, R. et al. Laminin, proteoglycan, nidogen and collagen IV: structural models and molecular interactions. Ciba Found. Symp. 108, 25–43 (1984).

    CAS  PubMed  Google Scholar 

  42. Fujiwara, S., Wiedemann, H., Timpl, R., Lustig, A. & Engel, J. Structure and interactions of heparan sulfate proteoglycans from a mouse tumor basement membrane. Eur. J. Biochem. 143, 145–157 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Paulsson, M. et al. Structure and function of basement membrane proteoglycans. Ciba Found. Symp. 124, 189–203 (1986).

    CAS  PubMed  Google Scholar 

  44. Dziadek, M., Paulsson, M., Aumailley, M. & Timpl, R. Purification and tissue distribution of a small protein (BM-40) extracted from a basement membrane tumor. Eur. J. Biochem. 161, 455–464 (1986).

    Article  CAS  PubMed  Google Scholar 

  45. Kohfeldt, E., Sasaki, T., Gohring, W. & Timpl, R. Nidogen-2: a new basement membrane protein with diverse binding properties. J. Mol. Biol. 282, 99–109 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Timpl, R. et al. Laminin: a glycoprotein from basement membranes. J. Biol. Chem. 254, 9933–9937 (1979).

    Article  CAS  PubMed  Google Scholar 

  47. Alitalo, K., Vaheri, A., Krieg, T. & Timpl, R. Biosynthesis of two subunits of type IV procollagen and of other basement membrane proteins by a human tumor cell line. Eur. J. Biochem. 109, 247–255 (1980).

    Article  CAS  PubMed  Google Scholar 

  48. Timpl, R. Proteoglycans of basement membranes. Experientia 49, 417–428 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Wisdom, B. J. Jr, Gunwar, S., Hudson, M. D., Noelken, M. E. & Hudson, B. G. Type IV collagen of Engelbreth-Holm-Swarm tumor matrix: identification of constituent chains. Connect. Tissue Res. 27, 225–234 (1992).

    Article  PubMed  Google Scholar 

  50. Lei, H., Kalluri, R., Furth, E. E., Baker, A. H. & Strauss, J. F. Rat amnion type IV collagen composition and metabolism: implications for membrane breakdown. Biol. Reprod. 60, 176–182 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Gunwar, S. et al. Glomerular basement membrane. Identification of a novel disulfide-cross-linked network of alpha3, alpha4, and alpha5 chains of type IV collagen and its implications for the pathogenesis of Alport syndrome. J. Biol. Chem. 273, 8767–8775 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Kahsai, T. Z. et al. Seminiferous tubule basement membrane. Composition and organization of type IV collagen chains, and the linkage of alpha3(IV) and alpha5(IV) chains. J. Biol. Chem. 272, 17023–17032 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Lei, H. et al. A program of cell death and extracellular matrix degradation is activated in the amnion before the onset of labor. J. Clin. Invest. 98, 1971–1978 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Colognato, H. & Yurchenco, P. D. Form and function: the laminin family of heterotrimers. Dev. Dyn. 218, 213–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Kalluri, R. Discovery of type IV collagen non-collagenous domains as novel integrin ligands and inhibitors of angiogenesis. 67th Quantitative Biology: Cardiovascular System, In press (2003). Documents how type-IV-collagen-derived endogenous inhibitor of angiogenesis and tumour growth were discovered.

    Google Scholar 

  56. Timpl, R. & Brown, J. C. The laminins. Matrix Biol. 14, 275–281 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Bengtsson, E. et al. The leucine-rich repeat protein PRELP binds perlecan and collagens and may function as a basement membrane anchor. J. Biol. Chem. 277, 15061–15068 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Miosge, N., Sasaki, T. & Timpl, R. Evidence of nidogen-2 compensation for nidogen-1 deficiency in transgenic mice. Matrix Biol. 21, 611–621 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Salmivirta, K. et al. Binding of mouse nidogen-2 to basement membrane components and cells and its expression in embryonic and adult tissues suggest complementary functions of the two nidogens. Exp. Cell. Res. 279, 188–201 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Schymeinsky, J. et al. Gene structure and functional analysis of the mouse nidogen-2 gene: nidogen-2 is not essential for basement membrane formation in mice. Mol. Cell. Biol. 22, 6820–6830 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Willem, M. et al. Specific ablation of the nidogen-binding site in the laminin gamma1 chain interferes with kidney and lung development. Development 129, 2711–2722 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Miosge, N. et al. Ultrastructural colocalization of nidogen-1 and nidogen-2 with laminin-1 in murine kidney basement membranes. Histochem. Cell Biol. 113, 115–124 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Costell, M. et al. Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 147, 1109–1122 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Klein, G., Conzelmann, S., Beck, S., Timpl, R. & Muller, C. A. Perlecan in human bone marrow: a growth-factor-presenting, but anti-adhesive, extracellular matrix component for hematopoietic cells. Matrix Biol. 14, 457–465 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Hopf, M., Gohring, W., Ries, A., Timpl, R. & Hohenester, E. Crystal structure and mutational analysis of a perlecan-binding fragment of nidogen-1. Nature Struct. Biol. 8, 634–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Costell, M., Sasaki, T., Mann, K., Yamada, Y. & Timpl, R. Structural characterization of recombinant domain II of the basement membrane proteoglycan perlecan. FEBS Lett. 396, 127–131 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Hopf, M., Gohring, W., Kohfeldt, E., Yamada, Y. & Timpl, R. Recombinant domain IV of perlecan binds to nidogens, laminin-nidogen complex, fibronectin, fibulin-2 and heparin. Eur. J. Biochem. 259, 917–925 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Yurchenco, P. D. & Ruben, G. C. Type IV collagen lateral associations in the EHS tumor matrix. Comparison with amniotic and in vitro networks. Am. J. Pathol. 132, 278–291 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Timpl, R. Macromolecular organization of basement membranes. Curr. Opin. Cell Biol. 8, 618–624 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Kalluri, R. & Cosgrove, D. Assembly of type IV collagen. Insights from alpha3(IV) collagen-deficient mice. J. Biol. Chem. 275, 12719–12724 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Boutaud, A. et al. Type IV collagen of the glomerular basement membrane. Evidence that the chain specificity of network assembly is encoded by the noncollagenous NC1 domains. J. Biol. Chem. 275, 30716–30724 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Borza, D. B. et al. The NC1 domain of collagen IV encodes a novel network composed of the alpha 1, alpha 2, alpha 5, and alpha 6 chains in smooth muscle basement membranes. J. Biol. Chem. 276, 28532–28540 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Sundaramoorthy, M., Meiyappan, M., Todd, P. & Hudson, B. G. Crystal structure of NC1 domains. Structural basis for type IV collagen assembly in basement membranes. J. Biol. Chem. 277, 31142–31153 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Than, M. E. et al. The 1.9-Å crystal structure of the noncollagenous (NC1) domain of human placenta collagen IV shows stabilization via a novel type of covalent Met-Lys cross-link. Proc. Natl Acad. Sci. USA 99, 6607–6612 (2002). First paper, along with reference 73, to solve the crystal structure of the NC1 domain hexamer of type IV collagen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Timpl, R. & Brown, J. C. Supramolecular assembly of basement membranes. Bioessays 18, 123–132 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Aumailley, M. et al. Nidogen mediates the formation of ternary complexes of basement membrane components. Kidney Int. 43, 7–12 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Aumailley, M., Wiedemann, H., Mann, K. & Timpl, R. Binding of nidogen and the laminin-nidogen complex to basement membrane collagen type IV. Eur. J. Biochem. 184, 241–248 (1989).

    Article  CAS  PubMed  Google Scholar 

  78. Reference deleted in proof.

  79. Kvansakul, M., Hopf, M., Ries, A., Timpl, R. & Hohenester, E. Structural basis for the high-affinity interaction of nidogen-1 with immunoglobulin-like domain 3 of perlecan. EMBO J. 20, 5342–5346 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hopf, M., Gohring, W., Mann, K. & Timpl, R. Mapping of binding sites for nidogens, fibulin-2, fibronectin and heparin to different IG modules of perlecan. J. Mol. Biol. 311, 529–541 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Brown, J. C., Sasaki, T., Gohring, W., Yamada, Y. & Timpl, R. The C-terminal domain V of perlecan promotes beta1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by glycosaminoglycans. Eur. J. Biochem. 250, 39–46 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Mayer, U., Mann, K., Fessler, L. I., Fessler, J. H. & Timpl, R. Drosophila laminin binds to mammalian nidogen and to heparan sulfate proteoglycan. Eur. J. Biochem. 245, 745–750 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Timpl, R. et al. Structure and function of the laminin-nidogen complex. Ann. NY Acad. Sci. 580, 311–323 (1990).

    Article  CAS  PubMed  Google Scholar 

  84. Nagayoshi, T. et al. Human nidogen: complete amino acid sequence and structural domains deduced from cDNAs, and evidence for polymorphism of the gene. DNA 8, 581–594 (1989).

    Article  CAS  PubMed  Google Scholar 

  85. Aumailley, M., Pesch, M., Tunggal, L., Gaill, F. & Fassler, R. Altered synthesis of laminin 1 and absence of basement membrane component deposition in (beta)1 integrin-deficient embryoid bodies. J. Cell Sci. 113, 259–268 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Ancsin, J. B. & Kisilevsky, R. Laminin interactions important for basement membrane assembly are promoted by zinc and implicate laminin zinc finger-like sequences. J. Biol. Chem. 271, 6845–6851 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Tsiper, M. V. & Yurchenco, P. D. Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. J. Cell Sci. 115, 1005–1015 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Charonis, A. S., Tsilbary, E. C., Yurchenco, P. D. & Furthmayr, H. Binding of type IV collagen to laminin. A morphological study. J. Cell Biol. 100, 1848–1853 (1985).

    Article  CAS  PubMed  Google Scholar 

  89. Sasaki, T. et al. Deficiency of beta 1 integrins in teratoma interferes with basement membrane assembly and laminin-1 expression. Exp. Cell Res. 238, 70–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Utani, A. et al. A specific sequence of the laminin alpha 2 chain critical for the initiation of heterotrimer assembly. J. Biol. Chem. 270, 3292–3298 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Andac, Z. et al. Analysis of heparin, alpha-dystroglycan and sulfatide binding to the G domain of the laminin alpha1 chain by site-directed mutagenesis. J. Mol. Biol. 287, 253–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Talts, J. F. & Timpl, R. Mutation of a basic sequence in the laminin alpha2LG3 module leads to a lack of proteolytic processing and has different effects on beta1 integrin-mediated cell adhesion and alpha-dystroglycan binding. FEBS Lett. 458, 319–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. McBride, D. J. Jr, Kadler, K. E., Hojima, Y. & Prockop, D. J. Self-assembly into fibrils of a homotrimer of type I collagen. Matrix 12, 256–263 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Prockop, D. J. Mutations in collagen genes as a cause of connective tissue diseases. N. Engl. J. Med. 326, 540–546 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Ortega, N. & Werb, Z. New functional roles for non-collagenous domains of basement membrane collagens. J. Cell Sci. 115, 4201–4214 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Tomono, Y. et al. Epitope-defined monoclonal antibodies against multiplexin collagens demonstrate that type XV and XVIII collagens are expressed in specialized basement membranes. Cell Struct. Funct. 27, 9–20 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Ramchandran, R. et al. Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem. Biophys. Res. Commun. 255, 735–739 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Rehn, M. & Pihlajaniemi, T. Alpha 1(XVIII), a collagen chain with frequent interruptions in the collagenous sequence, a distinct tissue distribution, and homology with type XV collagen. Proc. Natl Acad. Sci. USA 91, 4234–4238 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Timpl, R., Wiedemann, H., van Delden, V., Furthmayr, H. & Kuhn, K. A network model for the organization of type IV collagen molecules in basement membranes. Eur. J. Biochem. 120, 203–211 (1981).

    Article  CAS  PubMed  Google Scholar 

  100. Kuhn, K. et al. Macromolecular structure of basement membrane collagens. FEBS Lett. 125, 123–128 (1981).

    Article  CAS  PubMed  Google Scholar 

  101. Hagg, P. M., Horelli-Kuitunen, N., Eklund, L., Palotie, A. & Pihlajaniemi, T. Cloning of mouse type XV collagen sequences and mapping of the corresponding gene to 4B1-3. Comparison of mouse and human alpha 1 (XV) collagen sequences indicates divergence in the number of small collagenous domains. Genomics 45, 31–41 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Muragaki, Y., Abe, N., Ninomiya, Y., Olsen, B. R. & Ooshima, A. The human alpha 1(XV) collagen chain contains a large amino-terminal non-triple helical domain with a tandem repeat structure and homology to alpha 1(XVIII) collagen. J. Biol. Chem. 269, 4042–4046 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Muona, A., Eklund, L., Vaisanen, T. & Pihlajaniemi, T. Developmentally regulated expression of type XV collagen correlates with abnormalities in Col15a1(−/−) mice. Matrix Biol. 21, 89–102 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Myers, J. C., Kivirikko, S., Gordon, M. K., Dion, A. S. & Pihlajaniemi, T. Identification of a previously unknown human collagen chain, alpha 1(XV), characterized by extensive interruptions in the triple-helical region. Proc. Natl Acad. Sci. USA 89, 10144–10148 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Myers, J. C. et al. Human cDNA clones transcribed from an unusually high-molecular-weight RNA encode a new collagen chain. Gene 123, 211–217 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Myers, J. C., Dion, A. S., Abraham, V. & Amenta, P. S. Type XV collagen exhibits a widespread distribution in human tissues but a distinct localization in basement membrane zones. Cell Tissue Res. 286, 493–505 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Pihlajaniemi, T. & Rehn, M. Two new collagen subgroups: membrane-associated collagens and types XV and XVII. Prog. Nucleic Acid Res. Mol. Biol. 50, 225–262 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Kivirikko, S. et al. Primary structure of the alpha 1 chain of human type XV collagen and exon-intron organization in the 3′ region of the corresponding gene. J. Biol. Chem. 269, 4773–4779 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Kivirikko, S., Saarela, J., Myers, J. C., Autio-Harmainen, H. & Pihlajaniemi, T. Distribution of type XV collagen transcripts in human tissue and their production by muscle cells and fibroblasts. Am. J. Pathol. 147, 1500–1509 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sasaki, T. et al. Endostatins derived from collagens XV and XVIII differ in structural and binding properties, tissue distribution and anti-angiogenic activity. J. Mol. Biol. 301, 1179–1190 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Sasaki, T., Hohenester, E. & Timpl, R. Structure and function of collagen-derived endostatin inhibitors of angiogenesis. IUBMB Life 53, 77–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Sasaki, T. et al. Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J. 17, 4249–4256 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Eklund, L. et al. Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice. Proc. Natl Acad. Sci. USA 98, 1194–1199 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rehn, M., Hintikka, E. & Pihlajaniemi, T. Primary structure of the alpha 1 chain of mouse type XVIII collagen, partial structure of the corresponding gene, and comparison of the alpha 1(XVIII) chain with its homologue, the alpha 1(XV) collagen chain. J. Biol. Chem. 269, 13929–13935 (1994).

    Article  CAS  PubMed  Google Scholar 

  115. Oh, S. P. et al. Cloning of cDNA and genomic DNA encoding human type XVIII collagen and localization of the alpha 1(XVIII) collagen gene to mouse chromosome 10 and human chromosome 21. Genomics 19, 494–499 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Hagg, P. M., Muona, A., Lietard, J., Kivirikko, S. & Pihlajaniemi, T. Complete exon-intron organization of the human gene for the alpha1 chain of type XV collagen (COL15A1) and comparison with the homologous COL18A1 gene. J. Biol. Chem. 273, 17824–17831 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Hohenester, E., Sasaki, T., Olsen, B. R. & Timpl, R. Crystal structure of the angiogenesis inhibitor endostatin at 1.5 Å resolution. EMBO J. 17, 1656–1664 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Suzuki, O. T. et al. Molecular analysis of collagen XVIII reveals novel mutations, presence of a third isoform, and possible genetic heterogeneity in Knobloch syndrome. Am. J. Hum. Genet. 71, 1320–1329 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann. Surg. 175, 409–416 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  121. Reference deleted in proof.

  122. Folkman, J., Merler, E., Abernathy, C. & Williams, G. Isolation of a tumor factor responsible or angiogenesis. J. Exp. Med. 133, 275–288 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Folkman, J. Regulation of angiogenesis. Blood 82, 60 (1993).

    Article  Google Scholar 

  124. Folkman, J. & Shing, Y. Angiogenesis. J. Biol. Chem. 267, 10931–10934 (1992).

    Article  CAS  PubMed  Google Scholar 

  125. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Jain, R. K. & Carmeliet, P. F. Vessels of death or life. Sci. Am. 285, 38–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Folkman, J. Incipient angiogenesis. J. Natl Cancer Inst. 92, 94–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Folkman, J. & D'Amore, P. A. Blood vessel formation: what is its molecular basis? Cell 87, 1153–1155 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Clark, E. R. & Clark, E. L. Microscopic observation on the growth of blood capillaries in the living organisms. Am. J. Anat. 64, 251–264 (1938).

    Article  Google Scholar 

  132. Form, D. M., Pratt, B. M. & Madri, J. A. Endothelial cell proliferation during angiogenesis. In vitro modulation by basement membrane components. Lab. Invest. 55, 521–530 (1986).

    CAS  PubMed  Google Scholar 

  133. Madri, J. A. & Pratt, B. M. Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem. 34, 85–91 (1986).

    Article  CAS  PubMed  Google Scholar 

  134. Madri, J. A. Extracellular matrix modulation of vascular cell behaviour. Transpl. Immunol. 5, 179–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Ingber, D. E. & Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109, 317–330 (1989).

    Article  CAS  PubMed  Google Scholar 

  136. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  137. Folkman, J. in Cancer Medicine (eds Holland, J. F. et al.) 132–152 (BC Decker, Inc., Ontario, 2000).

    Google Scholar 

  138. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 161–174 (2002).

    Article  CAS  Google Scholar 

  139. Eliceiri, B. P. & Cheresh, D. A. Adhesion events in angiogenesis. Curr. Opin. Cell Biol. 13, 563–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Ingber, D. & Folkman, J. Inhibition of angiogenesis through modulation of collagen metabolism. Lab. Invest. 59, 44–51 (1988).

    CAS  PubMed  Google Scholar 

  141. Haralabopoulos, G. C. et al. Inhibitors of basement membrane collagen synthesis prevent endothelial cell alignment in matrigel in vitro and angiogenesis in vivo. Lab. Invest. 71, 575–582 (1994).

    CAS  PubMed  Google Scholar 

  142. Maragoudakis, M. E. et al. Basement membrane biosynthesis as a target for developing inhibitors of angiogenesis with anti-tumor properties. Kidney Int. 43, 147–150 (1993).

    Article  CAS  PubMed  Google Scholar 

  143. Maragoudakis, M. E., Haralabopoulos, G. C., Tsopanoglou, N. E. & Pipili-Synetos, E. Validation of collagenous protein synthesis as an index for angiogenesis with the use of morphological methods. Microvasc. Res. 50, 215–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  144. Oberbaumer, I., Wiedemann, H., Timpl, R. & Kuhn, K. Shape and assembly of type IV procollagen obtained from cell culture. EMBO J. 1, 805–810 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Grant, D. S., Kibbey, M. C., Kinsella, J. L., Cid, M. C. & Kleinman, H. K. The role of basement membrane in angiogenesis and tumor growth. Pathol. Res. Pract. 190, 854–863 (1994).

    Article  CAS  PubMed  Google Scholar 

  146. Furcht, L. T. Role of cell adhesion molecules in promoting migration of normal and malignant cells. Prog. Clin. Biol. Res. 149, 15–53 (1984).

    CAS  PubMed  Google Scholar 

  147. Furcht, L. T. Critical factors controlling angiogenesis: cell products, cell matrix, and growth factors. Lab. Invest. 55, 505–509 (1986).

    CAS  PubMed  Google Scholar 

  148. Cameron, J. D., Skubitz, A. P. & Furcht, L. T. Type IV collagen and corneal epithelial adhesion and migration. Effects of type IV collagen fragments and synthetic peptides on rabbit corneal epithelial cell adhesion and migration in vitro. Invest. Ophthalmol. Vis. Sci. 32, 2766–2773 (1991).

    CAS  PubMed  Google Scholar 

  149. Chelberg, M. K., McCarthy, J. B., Skubitz, A. P., Furcht, L. T. & Tsilibary, E. C. Characterization of a synthetic peptide from type IV collagen that promotes melanoma cell adhesion, spreading, and motility. J. Cell Biol. 111, 261–270 (1990).

    Article  CAS  PubMed  Google Scholar 

  150. Herbst, T. J., McCarthy, J. B., Tsilibary, E. C. & Furcht, L. T. Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration. J. Cell Biol. 106, 1365–1373 (1988).

    Article  CAS  PubMed  Google Scholar 

  151. Miles, A. J. et al. A peptide model of basement membrane collagen alpha 1 (IV) 531-543 binds the alpha 3 beta 1 integrin. J. Biol. Chem. 270, 29047–29050 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Tsilibary, E. C. et al. Heparin type IV collagen interactions: equilibrium binding and inhibition of type IV collagen self-assembly. J. Biol. Chem. 263, 19112–19118 (1988).

    Article  CAS  PubMed  Google Scholar 

  153. Tsilibary, E. C. et al. Identification of a multifunctional, cell-binding peptide sequence from the a1(NC1) of type IV collagen. J. Cell Biol. 111, 1583–1591 (1990).

    Article  CAS  PubMed  Google Scholar 

  154. Koliakos, G. G., Kouzi-Koliakos, K., Furcht, L. T., Reger, L. A. & Tsilibary, E. C. The binding of heparin to type IV collagen: domain specificity with identification of peptide sequences from the α1(IV0 and α2(IV) which preferentially bind heparin. J. Biol. Chem. 264, 2313–2323 (1989).

    Article  CAS  PubMed  Google Scholar 

  155. Miles, A. J., Skubitz, A. P., Furcht, L. T. & Fields, G. B. Promotion of cell adhesion by single-stranded and triple-helical peptide models of basement membrane collagen alpha 1(IV)531-543. Evidence for conformationally dependent and conformationally independent type IV collagen cell adhesion sites. J. Biol. Chem. 269, 30939–30945 (1994).

    Article  CAS  PubMed  Google Scholar 

  156. Timpl, R. et al. Structure and biology of the globular domain of basement membrane collagen type IV. Ann. NY Acad. Sci. 460, 58–72 (1985).

    Article  CAS  PubMed  Google Scholar 

  157. Klagsbrun, M., Knighton, D. & Folkman, J. Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res. 36, 110–114 (1976).

    CAS  PubMed  Google Scholar 

  158. Rogelj, S. et al. Basic fibroblast growth factor is an extracellular matrix component required for supporting the proliferation of vascular endothelial cells and the differentiation of PC12 cells. J. Cell Biol. 109, 823–831 (1989).

    Article  CAS  PubMed  Google Scholar 

  159. Bashkin, P. et al. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28, 1737–1743 (1989).

    Article  CAS  PubMed  Google Scholar 

  160. Sasaki, T. et al. Structural basis and potential role of heparin/heparan sulfate binding to the angiogenesis inhibitor endostatin. EMBO J. 18, 6240–6248 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Folkman, J. & Shing, Y. Control of angiogenesis by heparin and other sulfated polysaccharides. Adv. Exp. Med. Biol. 313, 355–364 (1992).

    Article  CAS  PubMed  Google Scholar 

  162. Soker, S. et al. Variations in the size and sulfation of heparin modulate the effect of heparin on the binding of VEGF165 to its receptors. Biochem. Biophys. Res. Commun. 203, 1339–1347 (1994).

    Article  CAS  PubMed  Google Scholar 

  163. Cohen, T. et al. VEGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan sulfates for efficient binding to the VEGF receptors of human melanoma cells. J. Biol. Chem. 270, 11322–11326 (1995).

    Article  CAS  PubMed  Google Scholar 

  164. Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Gengrinovitch, S. et al. Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J. Biol. Chem. 274, 10816–10822 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000). First paper to demonstrate the role of MMP9 in the angiogenic switch.

    Article  CAS  PubMed  Google Scholar 

  167. Heissig, B., Hattori, K., Friedrich, M., Rafii, S. & Werb, Z. Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr. Opin. Hematol. 10, 136–141 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463–516 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chang, C. & Werb, Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 11, S37–S43 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lynch, C. C. & Matrisian, L. M. Matrix metalloproteinases in tumor-host cell communication. Differentiation 70, 561–573 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Cunha, G. R. & Matrisian, L. M. It's not my fault, blame it on my microenvironment. Differentiation 70, 469–472 (2002).

    Article  PubMed  Google Scholar 

  173. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Coussens, L. M. & Werb, Z. Inflammatory cells and cancer: think different! J. Exp. Med. 193, F23–F26 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Xu, J. et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J. Cell Biol. 154, 1069–1079 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Xu, J., Rodriguez, D., Kim, J. J. & Brooks, P. C. Generation of monoclonal antibodies to cryptic collagen sites by using subtractive immunization. Hybridoma 19, 375–385 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Lee, S. J. et al. Endostatin binds to the catalytic domain of matrix metalloproteinase-2. FEBS Lett. 519, 147–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Kim, Y. M. et al. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res. 60, 5410–5413 (2000).

    CAS  PubMed  Google Scholar 

  179. Maeshima, Y. et al. Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin. J. Biol. Chem. 276, 15240–15248 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Kamphaus, G. D. et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J. Biol. Chem. 275, 1209–1215 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Colorado, P. C. et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res. 60, 2520–2526 (2000).

    CAS  PubMed  Google Scholar 

  182. Petitclerc, E. et al. New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J. Biol. Chem. 275, 8051–8061 (2000).

    Article  CAS  PubMed  Google Scholar 

  183. Yan, L., Borregaard, N., Kjeldsen, L. & Moses, M. A. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J. Biol. Chem. 276, 37258–37265 (2001).

    Article  CAS  PubMed  Google Scholar 

  184. Pozzi, A., LeVine, W. F. & Gardner, H. A. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 21, 272–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  185. Pozzi, A. et al. Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc. Natl Acad. Sci. USA 97, 2202–2207 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Alitalo, K., Kurkinen, M., Vaheri, A., Krieg, T. & Timpl, R. Extracellular matrix components synthesized by human amniotic epithelial cells in culture. Cell 19, 1053–1062 (1980).

    Article  CAS  PubMed  Google Scholar 

  187. Sheppard, D. In vivo functions of integrins: lessons from null mutations in mice. Matrix Biol. 19, 203–209 (2000).

    Article  CAS  PubMed  Google Scholar 

  188. Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992). A classic review of cell adhesion involving matrix molecules.

    Article  CAS  PubMed  Google Scholar 

  189. Aumailley, M., Specks, U. & Timpl, R. Cell adhesion to type-VI collagen. Biochem. Soc. Trans. 19, 843–847 (1991).

    Article  CAS  PubMed  Google Scholar 

  190. Aumailley, M., Timpl, R. & Risau, W. Differences in laminin fragment interactions of normal and transformed endothelial cells. Exp. Cell Res. 196, 177–183 (1991).

    Article  CAS  PubMed  Google Scholar 

  191. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Gardner, H. A. Integrin signaling in fibrosis and scleroderma. Curr. Rheumatol. Rep. 1, 28–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  193. de Fougerolles, A. R. et al. Regulation of inflammation by collagen-binding integrins alpha1beta1 and alpha2beta1 in models of hypersensitivity and arthritis. J. Clin. Invest. 105, 721–729 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Iruela-Arispe, M. L., Hasselaar, P. & Sage, H. Differential expression of extracellular proteins is correlated with angiogenesis in vitro. Lab. Invest. 64, 174–186 (1991).

    CAS  PubMed  Google Scholar 

  195. Yost, J. C. & Sage, E. H. Specific interaction of SPARC with endothelial cells is mediated through a carboxyl-terminal sequence containing a calcium-binding EF hand. J. Biol. Chem. 268, 25790–25796 (1993).

    Article  CAS  PubMed  Google Scholar 

  196. Kato, Y. et al. Induction of SPARC by VEGF in human vascular endothelial cells. Biochem. Biophys. Res. Commun. 287, 422–426 (2001).

    Article  CAS  PubMed  Google Scholar 

  197. Motamed, K. SPARC (osteonectin/BM-40). Int. J. Biochem. Cell Biol. 31, 1363–1366 (1999).

    Article  CAS  PubMed  Google Scholar 

  198. Kupprion, C., Motamed, K. & Sage, E. H. SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. J. Biol. Chem. 273, 29635–29640 (1998).

    Article  CAS  PubMed  Google Scholar 

  199. Basu, A., Kligman, L. H., Samulewicz, S. J. & Howe, C. C. Impaired wound healing in mice deficient in a matricellular protein SPARC (osteonectin, BM–40). BMC Cell Biol. 2, 15 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Norose, K. et al. SPARC deficiency leads to early-onset cataractogenesis. Invest. Ophthalmol. Vis. Sci. 39, 2674–2680 (1998).

    CAS  PubMed  Google Scholar 

  201. Thyboll, J. et al. Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol. Cell. Biol. 22, 1194–1202 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Gonzalez, A. M. et al. Complex interactions between the laminin alpha 4 subunit and integrins regulate endothelial cell behavior in vitro and angiogenesis in vivo. Proc. Natl Acad. Sci. USA 99, 16075–16080 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Aviezer, D. et al. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79, 1005–1013 (1994).

    Article  CAS  PubMed  Google Scholar 

  204. Mongiat, M., Sweeney, S. M., San Antonio, J. D., Fu, J. & Iozzo, R. V. Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J. Biol. Chem. 278, 4238–4249 (2003).

    Article  CAS  PubMed  Google Scholar 

  205. O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    Article  CAS  PubMed  Google Scholar 

  206. Marneros, A. G. & Olsen, B. R. The role of collagen-derived proteolytic fragments in angiogenesis. Matrix Biol. 20, 337–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  207. Jin, X. et al. Evaluation of endostatin antiangiogenesis gene therapy in vitro and in vivo. Cancer Gene Ther. 8, 982–989 (2001).

    Article  CAS  PubMed  Google Scholar 

  208. Joki, T. et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nature Biotechnol. 19, 35–39 (2001).

    Article  CAS  Google Scholar 

  209. Kim, Y. M. et al. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J. Biol. Chem. 277, 27872–27879 (2002).

    Article  CAS  PubMed  Google Scholar 

  210. Karumanchi, S. A. et al. Cell surface glypicans are low-affinity endostatin receptors. Mol. Cell 7, 811–822 (2001).

    Article  CAS  PubMed  Google Scholar 

  211. Rehn, M. et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc. Natl Acad. Sci. USA 98, 1024–1029 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Yamaguchi, N. et al. Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J. 18, 4414–4423 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Sudhakar, A. et al. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha vbeta 3 and alpha 5beta 1 integrins. Proc. Natl Acad. Sci. USA 100, 4766–4771 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Herbst, R. S. et al. Phase I study of recombinant human endostatin in patients with advanced solid tumors. J. Clin. Oncol. 20, 3792–3803 (2002).

    Article  CAS  PubMed  Google Scholar 

  215. Wen, W., Moses, M. A., Wiederschain, D., Arbiser, J. L. & Folkman, J. The generation of endostatin is mediated by elastase. Cancer Res. 59, 6052–6056 (1999).

    CAS  PubMed  Google Scholar 

  216. Felbor, U. et al. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 19, 1187–1194 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Maeshima, Y. et al. Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J. Biol. Chem. 275, 21340–21348 (2000).

    Article  CAS  PubMed  Google Scholar 

  218. Maeshima, Y., Colorado, P. C. & Kalluri, R. Two RGD-independent alpha vbeta 3 integrin binding sites on tumstatin regulate distinct anti-tumor properties. J. Biol. Chem. 275, 23745–23750 (2000).

    Article  CAS  PubMed  Google Scholar 

  219. Maeshima, Y. et al. Extracellular matrix-derived peptide binds to alpha(v)beta(3) integrin and inhibits angiogenesis. J. Biol. Chem. 276, 31959–31968 (2001).

    Article  CAS  PubMed  Google Scholar 

  220. Maeshima, Y. et al. Tumstatin, an endothelial cell–specific inhibitor of protein synthesis. Science 295, 140–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  221. Zhang, X., Hudson, B. G. & Sarras, M. P. Jr. Hydra cell aggregate development is blocked by selective fragments of fibronectin and type IV collagen. Dev. Biol. 164, 10–23 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I wish to thank L. Siniski and M.A. Soubasakas for their assistance with the figures and preparation of this manuscript. The schematics (modified) in figures 2 and 4 were kindly provided by P. Yurchenco. This work is supported by National Institutes of Health grants to R.K., research funds of the Center for Matrix Biology and the Espinosa Liver Fibrosis Fund, and generous financial gifts from the Ann L. and Herbert J. Siegel Philanthropic Support of the Jewish Communal Fund and the Joseph Lubrano Memorial Goldfield Family Charitable Trust Donation.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

α1β1 integrin

α2β1 integrin

α5β1 integrin

αvβ3 integrin

β1 integrin

agrin

arrestin

canstatin

dystroglycan

endostatin

entactin

FGF

fibulins

laminin

MMP2

MMP9

mTOR

PDGF

perlecan

SPARC

thrombin

tumstatin

VEGF

OMIM

Alport syndrome

Goodpasture syndrome

FURTHER INFORMATION

BD Biosciences

National Institutes of Health

R&D Systems

Glossary

BASEMENT MEMBRANE

A term first used by ultrastructural histologists when they observed an amorphous, dense and proteinaceous structure that is present basolateral to various cells in many tissues. It is also known as the basal lamina.

EXTRACELLULAR MATRIX

(ECM). Fibres of proteins that are present between clusters of cells in all tissues. These proteins are long and filamentous, and provide tensile strength and channels for communication and movement of cells in a given tissue.

INTERSTITIUM

The space between epithelial monolayers in a given organ, usually separated by a basement membrane.

CRYPTIC

These domains are hidden within a folded or assembled protein structure.

PROTOMER

The basic building unit of collagens, including type IV collagen. A protomer consists of three α-chains, which wind around each other to form a triple-helical structure. They interact with each other to form networks.

LAMININ TRIMERS

The building unit of a laminin network is a trimeric cruciform-like structure that is composed of three polypeptides termed α, β and γ chains.

CAP-DEPENDENT TRANSLATION

Protein synthesis in eukaryotes is predominantly driven by cap-dependent translation of mRNA. More than 95% of protein synthesis in eukaryotes is accomplished by cap-dependent translation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalluri, R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3, 422–433 (2003). https://doi.org/10.1038/nrc1094

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1094

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing