Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Protein-observed 19F-NMR for fragment screening, affinity quantification and druggability assessment

Abstract

NMR spectroscopy can be used to quantify the binding affinity between proteins and low-complexity molecules, termed 'fragments'; this versatile screening approach allows researchers to assess the druggability of new protein targets. Protein-observed 19F-NMR (PrOF NMR) using 19F-labeled amino acids generates relatively simple spectra that are able to provide dynamic structural information toward understanding protein folding and function. Changes in these spectra upon the addition of fragment molecules can be observed and quantified. This protocol describes the sequence-selective labeling of three proteins (the first bromodomains of Brd4 and BrdT, and the KIX domain of the CREB-binding protein) using commercially available fluorinated aromatic amino acids and fluorinated precursors as example applications of the method developed by our research group. Fragment-screening approaches are discussed, as well as Kd determination, ligand-efficiency calculations and druggability assessment, i.e., the ability to target these proteins using small-molecule ligands. Experiment times on the order of a few minutes and the simplicity of the NMR spectra obtained make this approach well-suited to the investigation of small- to medium-sized proteins, as well as the screening of multiple proteins in the same experiment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: PrOF NMR examples.
Figure 3: Characterization of fluorinated proteins expressed according to the present Protocol.
Figure 4: Using site-directed mutagenesis to assign PrOF resonances (see directions in Box 4).
Figure 5: Results from experiments involving small-molecule ligands for BrdT.
Figure 6: Deconvolution of fragment mixture.
Figure 7: Small-molecule titrations for Kd determination.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lepre, C.A. Practical aspects of NMR-based fragment screening. Methods Enzymol. 493, 219–239 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Dalvit, C. et al. A General NMR method for rapid, efficient, and reliable biochemical screening. J. Am. Chem. Soc. 125, 14620–14625 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Fielding, L. NMR methods for the determination of protein-ligand dissociation constants. Curr. Top. Med. Chem. 3, 39–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Williamson, M.P. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc. 73, 1–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka, D. et al. A Practical use of ligand efficiency indices out of the fragment-based approach: ligand efficiency-guided lead identification of soluble epoxide hydrolase inhibitors. J. Med. Chem. 54, 851–857 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Hopkins, A.L., Keseru, G.M., Leeson, P.D., Rees, D.C. & Reynolds, C.H. The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov. 13, 105–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Shuker, S.B., Hajduk, P.J., Meadows, R.P. & Fesik, S.W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Erlanson, D.A., McDowell, R.S. & O'Brien, T. Fragment-based drug discovery. J. Med. Chem. 47, 3463–3482 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Bollag, G. et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov. 11, 873–886 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Hajduk, P.J. & Greer, J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat. Rev. Drug Discov. 6, 211–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Arntson, K.E. & Pomerantz, W.C.K. Protein-observed fluorine NMR: a bioorthogonal approach for small molecule discovery. J. Med. Chem. 59, 5158–5171 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Kitevski-LeBlanc, J.L. & Prosser, R.S. Current applications of 19F NMR to studies of protein structure and dynamics. Prog. Nucl. Magn. Reson. Spectrosc. 62, 1–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Sharaf, N.G. & Gronenborn, A.M. (19)F-Modified proteins and (19)F-containing ligands as tools in solution NMR studies of protein interactions. Methods Enzymol. 565, 67–95 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Gerig, J. Fluorine NMR. Biophysics Textbook Online 1–35 (2001).

  15. Wu, B. et al. HTS by NMR of combinatorial libraries: a fragment-based approach to ligand discovery. Chem. Biol. 20, 19–33 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doak, B.C., Morton, C.J., Simpson, J.S. & Scanlon, M.J. Design and evaluation of the performance of an NMR screening fragment library. Aust. J. Chem. 66, 1465–1472 (2013).

    Article  CAS  Google Scholar 

  17. Siegal, G., Ab, E. & Schultz, J. Integration of fragment screening and library design. Drug Discov. Today 12, 1032–1039 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Lim, S.S. et al. Development of inhibitors of Plasmodium falciparum apical membrane antigen 1 based on fragment screening. Aust. J. Chem. 66, 1530 (2013).

    Article  CAS  Google Scholar 

  19. Vom, A. et al. Detection and prevention of aggregation-based false positives in STD-NMR-based fragment screening. Aust. J. Chem. 66, 1518 (2013).

    Article  CAS  Google Scholar 

  20. Dalvit, C., Fagerness, P.E., Hadden, D.T., Sarver, R.W. & Stockman, B.J. Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. J. Am. Chem. Soc. 125, 7696–7703 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Dias, D.M. et al. Is NMR fragment screening fine-tuned to assess druggability of protein–protein interactions? ACS Med. Chem. Lett. 5, 23–28 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pomerantz, W.C. et al. Profiling the dynamic interfaces of fluorinated transcription complexes for ligand discovery and characterization. ACS Chem. Biol. 7, 1345–1350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gee, C.T., Koleski, E.J. & Pomerantz, W.C. Fragment screening and druggability assessment for the CBP/p300 KIX domain through protein-observed 19F NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 54, 3735–3739 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leung, E.W. et al. 19F NMR as a probe of ligand interactions with the iNOS binding site of SPRY domain-containing SOCS box protein 2. Chem. Biol. Drug Des. 84, 616–625 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Ge, X. et al. Ligand-induced conformational change of Plasmodium falciparum AMA1 detected using 19F NMR. J. Med. Chem. 57, 6419–6427 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Curtis-Marof, R. et al. 19F NMR spectroscopy monitors ligand binding to recombinantly fluorine-labelled b'x from human protein disulphide isomerase (hPDI). Org. Biomol. Chem. 12, 3808–3812 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mishra, N.K., Urick, A.K., Ember, S.W., Schonbrunn, E. & Pomerantz, W.C. Fluorinated aromatic amino acids are sensitive 19F NMR probes for bromodomain-ligand interactions. ACS Chem. Biol. 9, 2755–2760 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, J.J., Horst, R., Katritch, V., Stevens, R.C. & Wuthrich, K. Biased signaling pathways in beta(2)-adrenergic receptor characterized by F-19-NMR. Science 335, 1106–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, L., Hajduk, P.J., Mack, J. & Olejniczak, E.T. Structural studies of Bcl-xL/ligand complexes using 19F NMR. J. Biomol. NMR 34, 221–227 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Urick, A.K. et al. Dual screening of BPTF and Brd4 using protein-observed fluorine NMR Uncovers new bromodomain probe molecules. ACS Chem. Biol. 10 2246–2256 (2015).

  31. Zartler, E.R. et al. RAMPED-UP NMR: multiplexed NMR-based screening for drug discovery. J. Am. Chem. Soc. 125, 10941–10946 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Sykes, B.D., Weingarten, H.I. & Schlesinger, M.J. Fluorotyrosine alkaline phosphatase from Escherichia coli: preparation, properties, and fluorine-19 nuclear magnetic resonance spectrum. Proc. Natl. Acad. Sci. USA 71, 469–473 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frieden, C., Hoeltzli, S.D. & Bann, J.G. The preparation of 19F-labeled proteins for NMR studies. in Methods Enzymol. Vol. 380 (eds. Michael, L., Johnson Jo M. Holt & K. Ackers Gary) 400–415 (Academic Press, 2004).

  34. Crowley, P.B., Kyne, C. & Monteith, W.B. Simple and inexpensive incorporation of 19F-tryptophan for protein NMR spectroscopy. Chem. Commun. 48, 10681–10683 (2012).

    Article  CAS  Google Scholar 

  35. Martin, M.P., Olesen, S.H., Georg, G.I. & Schönbrunn, E. Cyclin-dependent kinase inhibitor dinaciclib interacts with the acetyl-lysine recognition site of bromodomains. ACS Chem. Biol. 8, 2360–2365 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Bryant, R.G. The NMR time scale. J. Chem. Educ. 60, 933 (1983).

    Article  CAS  Google Scholar 

  37. Rogers, M.T. & Woodbrey, J.C. A proton magnetic resonance study of hindered internal rotation in some substituted N,N-dimethylamides. J. Phys. Chem. 66, 540–546 (1962).

    Article  CAS  Google Scholar 

  38. Hull, W.E. & Sykes, B.D. Fluorotyrosine alkaline phosphatase: internal mobility of individual tyrosines and the role of chemical shift anisotropy as a 19F nuclear spin relaxation mechanism in proteins. J. Mol. Biol. 98, 121–153 (1975).

    Article  CAS  PubMed  Google Scholar 

  39. Ho, C., Pratt, E.A. & Rule, G.S. Membrane-bound D-lactate dehydrogenase of Escherichia coli: a model for protein interactions in membranes. Biochim. Biophys. Acta 988, 173–184 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Klein-Seetharaman, J., Getmanova, E.V., Loewen, M.C., Reeves, P.J. & Khorana, H.G. NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution 19F NMR. Proc. Natl. Acad. Sci. USA 96, 13744–13749 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chung, K.Y. et al. Role of detergents in conformational exchange of a G protein-coupled receptor. J. Biol. Chem. 287, 36305–36311 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suzuki, Y. et al. Resolution of oligomeric species during the aggregation of Abeta1–40 using (19)F NMR. Biochemistry 52, 1903–1912 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Li, C. et al. Protein (19)F NMR in Escherichia coli. J. Am. Chem. Soc. 132, 321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hammill, J.T., Miyake-Stoner, S., Hazen, J.L., Jackson, J.C. & Mehl, R.A. Preparation of site-specifically labeled fluorinated proteins for 19F-NMR structural characterization. Nat. Protoc. 2, 2601–2607 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Salopek-Sondi, B., Vaughan, M.D., Skeels, M.C., Honek, J.F. & Luck, L.A. (19)F NMR studies of the leucine-isoleucine-valine binding protein: evidence that a closed conformation exists in solution. J. Biomol. Struct. Dyn. 21, 235–246 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Duewel, H., Daub, E., Robinson, V. & Honek, J.F. Incorporation of trifluoromethionine into a phage lysozyme: implications and a new marker for use in protein 19F NMR. Biochemistry 36, 3404–3416 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Tang, Y. & Tirrell, D.A. Biosynthesis of a highly stable coiled-coil protein containing hexafluoroleucine in an engineered bacterial host. J. Am. Chem. Soc. 123, 11089–11090 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Tang, Y. et al. Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine. Biochemistry 40, 2790–2796 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, H.Y., Lee, K.H., Al-Hashimi, H.M. & Marsh, E.N. Modulating protein structure with fluorous amino acids: increased stability and native-like structure conferred on a 4-helix bundle protein by hexafluoroleucine. J. Am. Chem. Soc. 128, 337–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Bogan, A.A. & Thorn, K.S. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Hajduk, P.J., Huth, J.R. & Fesik, S.W. Druggability indices for protein targets derived from NMR-based screening data. J. Med. Chem. 48, 2518–2525 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Lodge, J.M., Justin Rettenmaier, T., Wells, J.A., Pomerantz, W.C. & Mapp, A.K. FP tethering: a screening technique to rapidly identify compounds that disrupt protein–protein interactions. Medchemcomm. 5, 370–375 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Kim, H.W., Perez, J.A., Ferguson, S.J. & Campbell, I.D. The specific incorporation of labelled aromatic amino acids into proteins through growth of bacteria in the presence of glyphosate. Application to fluorotryptophan labelling to the H(+)-ATPase of Escherichia coli and NMR studies. FEBS Lett. 272, 34–36 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Bai, P., Luo, L. & Peng, Z. Side chain accessibility and dynamics in the molten globule state of alpha-lactalbumin: a (19)F-NMR study. Biochemistry 39, 372–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Neerathilingam, M., Greene, L.H., Colebrooke, S.A., Campbell, I.D. & Staunton, D. Quantitation of protein expression in a cell-free system: efficient detection of yields and 19F NMR to identify folded protein. J. Biomol. NMR 31, 11–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Akoka, S., Barantin, L. & Trierweiler, M. Concentration measurement by proton NMR using the ERETIC method. Anal. Chem. 71, 2554–2557 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Dalvit, C. et al. Sensitivity improvement in 19F NMR-based screening experiments: theoretical considerations and experimental applications. J. Am. Chem. Soc. 127, 13380–13385 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Seyedsayamdost, M.R., Reece, S.Y., Nocera, D.G. & Stubbe, J. Mono-, di-, tri-, and tetra-substituted fluorotyrosines: new probes for enzymes that use tyrosyl radicals in catalysis. J. Am. Chem. Soc. 128, 1569–1579 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Furter, R. Expansion of the genetic code: site-directed p-fluoro-phenylalanine incorporation in Escherichia coli. Prot. Sci. 7, 419–426 (1998).

    Article  CAS  Google Scholar 

  60. Kitevski-LeBlanc, J.L., Al-Abdul-Wahid, M.S. & Prosser, R.S. A mutagenesis-free approach to assignment of 19F NMR resonances in biosynthetically labeled proteins. J. Am. Chem. Soc. 131, 2054–2055 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded in part by the NSF-CAREER Award CHE-1352091 (to W.C.K.P., N.K.M. and L.M.L.H.), National Institutes of Health (NIH) Biotechnology training grant 5T32GM008347-23 (to A.K.U.) and NIH chemistry–biology interface training grant T32-GM08700 (to C.T.G.). The Pomerantz lab also thanks the Garber family and relatives for their generous support of this research. We also thank I. Ropson (Penn State University) for providing the DL39(DE3) cell line.

Author information

Authors and Affiliations

Authors

Contributions

W.C.K.P. oversaw the implementation and design of all experiments reported here. C.T.G. and K.E.A. carried out protein expression and characterization experiments with KIX; C.T.G. also carried out protein expression and characterization experiments with BrdT; N.K.M. and A.K.U. carried out protein expression and characterization experiments with Brd4; L.M.L.H. carried out fluorescence polarization experiments; and A.W. discovered fragment A. All authors assisted with writing and editing the manuscript.

Corresponding author

Correspondence to William C K Pomerantz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Binding activity comparison of non-fluorinated and fluorinated proteins

Direct binding experiment of BODIPY-BI, a Brd4 bromodomain ligand to unlabeled Brd4 and 5FW-labeled Brd4 by fluorescence polarization.

Supplementary Figure 2 19F NMR spectral analysis of 5FW BrdT in the presence of increasing concentrations of Dinaciclib.

A) Left: Ribbon diagram of BrdT (PDB Code: 4FLP) with tryptophan side chains indicated as sticks shown in red. Right: Stacked PrOF NMR spectra with increasing concentration of dinaciclib. B) Absolute value of chemical shift perturbations for all 5FW BrdT tyrosine resonances at 400 μM Dinaciclib. C) Binding isotherm of both W44* and W50* perturbations for the titration with Dinaciclib. * denotes resonances that have not yet been assigned by site directed mutagenesis, but were inferred from ligand binding.

Supplementary Figure 3 19F NMR spectral analysis of 5FW BrdT in the presence of increasing concentrations of A.

A) Left: Ribbon diagram of BrdT (PDB Code: 4FLP) with tryptophan side chains indicated as sticks shown in red. Right: Stacked PrOF NMR spectra with increasing concentration of A. B) Absolute value of chemical shift perturbations for all 5FW BrdT tyrosine resonances at 2 mM A. C) Binding isotherm of both W44* and W50* perturbations for the titration with A. * denotes resonances that have not yet been assigned by site directed mutagenesis, but were inferred from ligand binding.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Method, Supplementary Tables 1 and 2 (PDF 1604 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gee, C., Arntson, K., Urick, A. et al. Protein-observed 19F-NMR for fragment screening, affinity quantification and druggability assessment. Nat Protoc 11, 1414–1427 (2016). https://doi.org/10.1038/nprot.2016.079

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.079

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research