Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Mouse corneal lymphangiogenesis model

Abstract

This protocol describes a powerful in vivo method to quantitatively study the formation of new lymphatic vessels in the avascular cornea without interference of pre-existing lymphatics. Implantation of 100 ng of lymphangiogenic factors such as vascular endothelial growth factor (VEGF)-A, VEGF-C or fibroblast growth factor-2, together with slow-release polymers, into a surgically created micropocket in the mouse cornea elicits a robust lymphangiogenic response. Newly formed lymphatic vessels are detected by immunohistochemical staining of the flattened corneal tissue with lymphatic endothelial-specific markers such as lymphatic vessel endothelial hyaluronan receptor-1; less-specific markers such as vascular endothelial growth factor receptor 3 may also be used. Lymphatic vessel growth in relation to hemangiogenesis can be readily detected starting at day 5 or 6 after pellet implantation and persists for 14 d. This protocol offers a unique opportunity to study the mechanisms underlying lymphatic vessel formation, remodeling and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of pellet preparation, insertion and angiogenic response in the mouse cornea.
Figure 2: Analysis of FGF-2-induced lymphatic vessels by LYVE-1 and VEGFR3 staining and blood vessels by CD31 staining.
Figure 3: Examples of corneal angiogenesis and lymangiogenesis induced by various angiogenic factors.

Similar content being viewed by others

References

  1. Cao, Y. Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat. Rev. Cancer 5, 735–743 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Alitalo, K., Tammela, T. & Petrova, T.V. Lymphangiogenesis in development and human disease. Nature 438, 946–953 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Makinen, T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat. Med. 7, 199–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Cao, R. et al. Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood 107, 3531–3536 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Cao, R. et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6, 333–345 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Bjorndahl, M. et al. Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc. Natl. Acad. Sci. USA 102, 15593–15598 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cao, R. et al. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ. Res. 94, 664–670 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Kubo, H. et al. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc. Natl. Acad. Sci. USA 99, 8868–8873 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao, Y. et al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc. Natl. Acad. Sci. USA 95, 14389–14394 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Joukov, V. et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 16, 3898–3911 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bjorndahl, M.A. et al. Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res. 65, 9261–9268 (2005).

    Article  PubMed  Google Scholar 

  12. Bruyere, F. et al. Modeling lymphangiogenesis in a three-dimensional culture system. Nat. Methods 5, 431–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Kerjaschki, D. et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat. Med. 12, 230–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Ny, A. et al. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat. Med. 11, 998–1004 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Nagy, J.A. et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J. Exp. Med. 196, 1497–1506 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maruyama, K. et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J. Clin. Invest. 115, 2363–2372 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rogers, M.S., Birsner, A.E. & D'Amato, R.J. The mouse cornea micropocket angiogenesis assay. Nat. Protoc. 2, 2545–2550 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Cao, R. et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med. 9, 604–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Bock, F. et al. Improved semiautomatic method for morphometry of angiogenesis and lymphangiogenesis in corneal flatmounts. Exp. Eye. Res. 87, 462–470 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Cursiefen, C. et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest. 113, 1040–1050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Albuquerque, R.J. et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat. Med. 15, 1023–1030 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakao, S. et al. Lymphangiogenesis and angiogenesis: concurrence and/or dependence? Studies in inbred mouse strains. FASEB J. 24, 504–513 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Regenfuss, B. et al. Genetic heterogeneity of lymphangiogenesis in different mouse strains. Am. J. Pathol. 177, 501–510 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rohan, R.M., Fernandez, A., Udagawa, T., Yuan, J. & D'Amato, R.J. Genetic heterogeneity of angiogenesis in mice. FASEB J. 14, 871–876 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our laboratory was supported through research grants from the Swedish Research Council, the Swedish Cancer Foundation, the Karolinska Institute Foundation, the Karolinska Institute distinguished professor award, the European Union Integrated Project of Metoxia (Project no. 222741) and the European Research Council Advanced Grant ANGIOFAT (Project no. 250021). Y.C. is supported by the Swedish Heart and Lung Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. designed the study. R.C. conducted the experiments. R.C., S.L., H.J., Y.Z., Y.Y., J.H., E.-M.H. and Y.C. analyzed the data. R.C., S.L., H.J., Y.Z., Y.Y., J.H. and Y.C. participated in designing and discussing this study. R.C., S.L. and Y.C. wrote the paper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, R., Lim, S., Ji, H. et al. Mouse corneal lymphangiogenesis model. Nat Protoc 6, 817–826 (2011). https://doi.org/10.1038/nprot.2011.359

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.359

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing