Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Transcuticular optical imaging of stimulus-evoked neural activities in the Drosophila peripheral nervous system

Abstract

The nervous system of Drosophila is widely used to study neuronal signal processing because the activities of neurons can be controlled and monitored by cell type–specific expression of genetically encoded actuator and sensor proteins. Measuring neural activities in adult flies, however, usually requires surgical approaches to penetrate the firm and pigmented cuticular exoskeleton. Interfering with this exoskeleton is critical in the case of the peripheral nervous system (PNS), as sensory neurons are often located directly beneath the cuticle and are associated with specialized stimulus-receiving and -conducting cuticular structures. In this article, we describe how the activities of these neurons can be probed nondestructively through the cuticle if a genetically encoded fluorescent protein sensor with strong baseline fluorescence is used. The method is exemplified for mechanosensory neurons in the adult antenna but can also be applied to many other PNS neurons, as is shown for the femoral chordotonal organ located in the fly's leg.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcuticular visualization of neural activity in the Drosophila antenna.
Figure 2: Time course of calcium-dependent fluorescence changes.
Figure 3: Mechanically evoked calcium signals in femoral chordotonal organ (FCO) neurons.

Similar content being viewed by others

References

  1. Sokolowski, M.B. Drosophila: genetics meets behaviour. Nat. Rev. Genet. 2, 879–890 (2001).

    Article  CAS  Google Scholar 

  2. Olsen, S.R. & Wilson, R.I. Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila. Trends Neurosci. 31, 512–520 (2008).

    Article  CAS  Google Scholar 

  3. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1998).

    Google Scholar 

  4. Duffy, J.B. GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34, 1–15 (2002).

    Article  CAS  Google Scholar 

  5. McGuire, S.E., Roman, G. & Davis, R.L. Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet. 20, 384–391 (2004).

    Article  CAS  Google Scholar 

  6. Nitabach, M.N., Blau, J. & Holmes, T.C. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109, 485–495 (2002).

    Article  CAS  Google Scholar 

  7. Sweeney, S.T., Broadie, K., Keane, J., Niemann, H. & O'Kane, C.J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995).

    Article  CAS  Google Scholar 

  8. Kitamoto, T. Targeted expression of temperature-sensitive dynamin to study neural mechanisms of complex behavior in Drosophila. J. Neurogenet. 16, 205–228 (2002).

    Article  CAS  Google Scholar 

  9. Schroll, C. et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16, 1741–1747 (2006).

    Article  CAS  Google Scholar 

  10. Suh, G.S. et al. Light activation of an innate olfactory avoidance response in Drosophila. Curr. Biol. 17, 905–908 (2007).

    Article  CAS  Google Scholar 

  11. Zhang, W., Ge, W. & Wang, Z. A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2-mediated photoactivation of targeted neurons. Eur. J. Neurosci. 26, 2405–2416 (2007).

    Article  Google Scholar 

  12. Pulver, S.R., Pashkovski, S.L., Hornstein, N.J., Garrity, P.A. & Griffith, L.C. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J. Neurophysiol. 101, 3075–3088 (2009).

    Article  Google Scholar 

  13. Fiala, A. & Spall, T. In vivo calcium imaging of brain activity in Drosophila by transgenic cameleon expression. Sci. STKE 174, PL6 (2003).

    Google Scholar 

  14. Miyawaki, A. Fluorescence imaging of physiological activity in complex systems using GFP-based probes. Curr. Opin. Neurobiol. 13, 591–596 (2003).

    Article  CAS  Google Scholar 

  15. Reiff, D.F. et al. In vivo performance of genetically encoded indicators of neural activity in flies. J. Neurosci. 25, 4766–4778 (2005).

    Article  CAS  Google Scholar 

  16. Jayaraman, V. & Laurent, G. Evaluating a genetically encoded optical sensor of neural activity using electrophysiology in intact adult fruit flies. Front. Neural. Circuits 1, 3 (2007).

    Article  Google Scholar 

  17. Hendel, T. et al. Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J. Neurosci. 28, 7399–7411 (2008).

    Article  CAS  Google Scholar 

  18. Vosshall, L.B. & Stocker, R.F. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30, 505–533 (2007).

    Article  CAS  Google Scholar 

  19. Borst, A. Drosophila's view on insect vision. Curr. Biol. 19, 36–47 (2009).

    Article  Google Scholar 

  20. Amrein, H. & Thorne, N. Gustatory perception and behavior in Drosophila melanogaster. Curr. Biol. 15, 673–684 (2005).

    Article  Google Scholar 

  21. Kamikouchi, A. et al. The neural basis of Drosophila gravity-sensing and hearing. Nature 458, 165–171 (2009).

    Article  CAS  Google Scholar 

  22. Yorozu, S. et al. Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature 458, 201–205 (2009).

    Article  CAS  Google Scholar 

  23. Fiala, A. Olfaction and olfactory learning in Drosophila: recent progress. Curr. Opin. Neurobiol. 17, 720–726 (2007).

    Article  CAS  Google Scholar 

  24. Fiala, A. et al. Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr. Biol. 12, 1877–1884 (2002).

    Article  CAS  Google Scholar 

  25. Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    Article  CAS  Google Scholar 

  26. Wang, Y. et al. Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. J. Neurosci. 24, 6507–6514 (2004).

    Article  CAS  Google Scholar 

  27. Marella, S. et al. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285–295 (2006).

    Article  CAS  Google Scholar 

  28. Turner, S.L. & Ray, A. Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants. Nature 461, 277–281 (2009).

    Article  CAS  Google Scholar 

  29. de Bruyne, M., Foster, K. & Carlson, J.R. Odor coding in the Drosophila antenna. Neuron 30, 537–352 (2001).

    Article  CAS  Google Scholar 

  30. Dobritsa, A.A., van der Goes van Naters, W., Warr, C.G., Steinbrecht, R.A. & Carlson, J.R. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37, 827–841 (2003).

    Article  CAS  Google Scholar 

  31. Moon, S.J., Lee, Y., Jiao, Y. & Montell, C. A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr. Biol. 19, 1623–1627 (2009).

    Article  CAS  Google Scholar 

  32. Albert, J.T., Nadrowski, B. & Göpfert, M.C. Mechanical signatures of transducer gating in the Drosophila ear. Curr. Biol. 17, 1000–1006 (2007).

    Article  CAS  Google Scholar 

  33. Eberl, D.F., Hardy, R.W. & Kernan, M.J. Genetically similar transduction mechanisms for touch and hearing in Drosophila. J. Neurosci. 20, 5981–5988 (2000).

    Article  CAS  Google Scholar 

  34. Miyawaki, A., Griesbeck, O., Heim, R. & Tsien, R.Y. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl Acad. Sci. USA 96, 2135–2140 (1999).

    Article  CAS  Google Scholar 

  35. Diegelmann, S., Fiala, A., Leibold, C., Spall, T. & Buchner, E. Transgenic flies expressing the fluorescence calcium sensor Cameleon 2.1 under UAS control. Genesis 34, 95–98 (2002).

    Article  CAS  Google Scholar 

  36. Pelz, D., Roeske, T., Syed, Z., de Bruyne, M. & Galizia, C.G. The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a). J. Neurobiol. 66, 1544–1563 (2006).

    Article  CAS  Google Scholar 

  37. Kamikouchi, A., Shimada, T. & Ito, K. Comprehensive classification of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. J. Comp. Neurol. 499, 317–356 (2006).

    Article  Google Scholar 

  38. Kim, J. et al. A TRPV family ion channel required for hearing in Drosophila. Nature 424, 81–84 (2003).

    Article  CAS  Google Scholar 

  39. Sharma, Y., Cheung, U., Larsen, E.W. & Eberl, D.F. PPTGAL, a convenient Gal4 P-element vector for testing expression of enhancer fragments in Drosophila. Genesis 34, 115–118 (2002).

    Article  CAS  Google Scholar 

  40. Albert, J.T., Nadrowski, B., Kamikouchi, A. & Göpfert, M.C. Mechanical tracing of protein function in the Drosophila ear. Nat. Protoc. [online] doi:10.1038/nprot.2006.364 (2006).

  41. Nadrowski, B., Albert, J.T. & Göpfert, M.C. Transducer-based force generation explains active process in Drosophila hearing. Curr. Biol. 18, 1365–1372 (2008).

    Article  CAS  Google Scholar 

  42. Göpfert, M.C. & Robert, D. The mechanical basis of Drosophila audition. J. Exp. Biol. 205, 1199–1208 (2002).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.T. Albert, E. Buchner, M. Dübbert, K. Ito, K. Öchsner and T. Völler for fly strains and technical support. This work was supported by the Alexander von Humboldt Foundation and the Japan Society for the Promotion of Science (to A.K.); the DFG Research Centre for the Molecular Physiology of the Brain, the Volkswagen-Foundation and the BMBF Bernstein Network for Computational Neuroscience (to M.C.G.); and the DFG (SFB 554 to A.F.).

Author information

Authors and Affiliations

Authors

Contributions

A.K. and M.C.G. designed the experiments; A.K., T.E., R.W. and A.F. conducted the experiments. A.K., M.C.G and A.F. wrote the article. M.C.G and A.F. supervised the work. All authors discussed the concepts and results, and commented on the article.

Corresponding authors

Correspondence to Martin C Göpfert or André Fiala.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamikouchi, A., Wiek, R., Effertz, T. et al. Transcuticular optical imaging of stimulus-evoked neural activities in the Drosophila peripheral nervous system. Nat Protoc 5, 1229–1235 (2010). https://doi.org/10.1038/nprot.2010.85

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.85

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing