Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Simple protocols for NMR analysis of the enantiomeric purity of chiral diols

Abstract

A three-component chiral derivatization protocol for determining the enantiopurity of chiral diols by 1H NMR spectroscopic analysis is described here. The present approach involves the derivatization of 1,2- 1,3- and 1,4-diols with 2-formylphenylboronic acid and enantiopure α-methylbenzylamine. This method affords a mixture of diastereoisomeric iminoboronate esters whose ratio can be determined by integration of well-resolved diastereotopic resonances in their 1H NMR spectra, thus enabling the determination of the enantiopurity of the parent diol. The protocol as described takes less than 90 min to complete.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Determination of the enantiomeric excess of a chiral diol via derivatization with 2-formylphenyl boronic acid and (S)-α-methylbenzylamine.
Figure 2: Range of racemic diols derivatized to afford diastereoisomeric iminoboronate esters that display at least one set of well-resolved diastereotopic resonances in their 1H NMR spectra.
Figure 3: Derivatization of racemic (syn)-methyl-2,3-dihydroxy-3-phenylpropionate.
Figure 4: Determination of the enantiomeric excess of scalemic (αS,2S,3R)-(syn)-methyl-2,3-dihydroxy-3-phenylpropionate.

Similar content being viewed by others

References

  1. Kolb, H.C., VanNieuwenhze, M.S. & Sharpless, K.B. Catalytic asymmetric dihydroxylation. Chem. Rev. 94, 2483–2547 (1994).

    Article  CAS  Google Scholar 

  2. Challenger, C.A. Chiral Intermediates. Wiley: London, 2001.

    Google Scholar 

  3. Hanessian, S. Total Synthesis of Natural Products: The Chiron Approach. Pergamon: London, 1983.

    Google Scholar 

  4. Parker, D. NMR determination of enantiomeric purity. Chem. Rev., 91, 1441–1457 (1991).

    Article  CAS  Google Scholar 

  5. Dale, J.A. & Mosher, H.S. Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and alpha-methoxy-alpha-trifluoromethylphenylacetate (MTPA) esters. J. Am. Chem. Soc. 95, 512–519 (1973).

    Article  CAS  Google Scholar 

  6. Manuel Seco, J., Martino, M., Quiñoá, E. & Riguera, R. Absolute configuration of 1,n-diols by NMR: the importance of the combined anisotropic effects in bis-arylmethoxyacetates. Org. Lett. 2, 3261–3264 (2000).

    Article  Google Scholar 

  7. Freire, F., Manuel Seco, J., Quiñoá, E. & Riguera, R. Determining the absolute stereochemistry of secondary/secondary diols by 1H NMR: basis and applications. J. Org. Chem. 70, 3778–3790 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Freire, F., Manuel Seco, J. & Riguera, R. The assignment of the absolute configuration and the identification of the pro R and Pro S methylene protons in 1,2-diols by low temperature NMR of a single derivative. Org. Lett. 7, 4855–4858 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Kouda, K., Ooi, T. & Kusumi, T. Application of the modified Mosher's method to linear 1,3-diols. Tetrahedron Lett. 40, 3005–3008 (1999).

    Article  CAS  Google Scholar 

  10. Trost, B.M., Belletire, J.L., Godleski, S., McDougal, P.G., Balkovec, J.M., Baldwin, J.J., Christy, M.E., Ponticello, G.S., Varga, S.L. & Springer, J.P. On the use of the O-methylmandelate ester for establishment of absolute-configuration of secondary alcohols. J. Org. Chem. 51, 2370–2374 (1986).

    Article  CAS  Google Scholar 

  11. Brunel, J.M. & Faure, B. A new 31P NMR method for the enantiomeric excess determination of diols and secondary diamines with C2 symmetry. Tetrahedron Asymmetry 6, 2353–2356 (1995).

    Article  CAS  Google Scholar 

  12. Garner, C.M., McWhorter, C. & Goerke, A.R. Methyldichlorophosphate: a chiral derivatizing agent for symmetrical diols. Tetrahedron Lett. 38, 7717–7720 (1997).

    Article  CAS  Google Scholar 

  13. Fukui, H., Fukushi, Y. & Tahara, S. NMR determination of the absolute configuration of chiral 1,2- and 1,3-diols. Tetrahedron Lett. 44, 4063–4065 (2003).

    Article  CAS  Google Scholar 

  14. Tokles, M. & Snyder, J.K. Camphanylboronic acid, a chiral derivatizing agent for optical purity determination of diols. Tetrahedron Lett. 29, 6063–6066 (1988).

    Article  CAS  Google Scholar 

  15. Burgess, K. & Porte, A.M. Reagent for determining optical purities of diols via formation of diastereomeric arylboronate esters. Angew. Chem. Int. Ed. Engl. 33, 1182–1184 (1994).

    Article  Google Scholar 

  16. Caselli, E., Danieli, C., Morandi, S., Bonfiglio, B., Forni, A. & Prati, F. (S)-(+)-N-Acetylphenylglycineboronic acid: a chiral derivatizing agent for ee determination of 1,2-diols. Org. Lett. 5, 4863–4866 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Resnick, S.M., Torok, D.S. & Gibson, D.T. Chemoenzymic synthesis of chiral boronates for the determination of the absolute configuration and enantiomeric excess of bacterial and synthetic cis-dienediols. J. Org. Chem. 60, 3546–3549 (1995).

    Article  CAS  Google Scholar 

  18. Morandi, S., Caselli, E., Forni, A., Bucciarelli, M., Torre, G. & Prati, F. Enantiomeric excess of 1,2-diols by formation of cyclic boronates: an improved method. Tetrahedron Asymmetry 16, 2918–2926 (2005).

    Article  CAS  Google Scholar 

  19. Pérez-Fuertes, Y., Kelly, A.M., Johnson, A.L., Arimori, S., Bull, S.D. & James, T.D. Simple protocol for NMR analysis of the enantiomeric purity of primary amines. Org. Lett. 8, 609–612 (2006).

    Article  PubMed  Google Scholar 

  20. Kelly, A.M., Pérez-Fuertes, Y., Arimori, S., Bull, S.D. & James, T.D. Simple protocol for NMR analysis of the enantiomeric purity of diols. Org. Lett. 8, 1971–1974 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Axe, P. et al. Enantiopure pseudo-C3-symmetric titanium alkoxide with propeller-like chirality. Org. Lett. 9, 223–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Taylor, P.J.M. & Bull, S.D. An improved synthesis of deuterated Schoöllkopf's bis-lactim ether and its use for the asymmetric synthesis of (R)-[α-2H]-phenylalanine methyl esters. Tetrahedron Asymmetry 17, 1170–1178 (2006).

    Article  CAS  Google Scholar 

  23. James, T.D. Saccharide-selective boronic acid based photoinduced electron transfer (PET) fluorescent sensors. Top. Curr. Chem. 277, 107–152 (2007).

    Article  CAS  Google Scholar 

  24. James, T.D. & Shinkai, S. Artificial receptors as chemosensors for carbohydrates. Top. Curr. Chem. 218, 159–200 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the University of Bath, the EPSRC, the Leverhulme Trust, and the Royal Society for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven D Bull or Tony D James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, A., Pérez-Fuertes, Y., Fossey, J. et al. Simple protocols for NMR analysis of the enantiomeric purity of chiral diols. Nat Protoc 3, 215–219 (2008). https://doi.org/10.1038/nprot.2007.523

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.523

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing