Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences

Abstract

This protocol for solid-phase peptide synthesis (SPPS) is based on the widely used Fmoc/tBu strategy, activation of the carboxyl groups by aminium-derived coupling reagents and use of PEG-modified polystyrene resins. A standard protocol is described, which was successfully applied in our lab for the synthesis of the corticotropin-releasing factor (CRF), >400 CRF analogs and a countless number of other peptides. The 41-mer peptide CRF is obtained within 80 working hours. To achieve the so-called difficult sequences, special techniques have to be applied in order to reduce aggregation of the growing peptide chain, which is the main cause of failure for peptide chemosynthesis. Exemplary application of depsipeptide and pseudoproline units is shown for synthesizing an extremely difficult sequence, the Asn(15) analog of the WW domain FBP28, which is impossible to obtain using the standard protocol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Special units used during assembly to prevent peptide chain aggregation.
Figure 3: Diketopiperazine (DKP) formation promoted by piperidine during Fmoc removal.
Figure 4: Depsipeptides are converted into the all-amide form through an O,N-acyl shift, which occurs quantitatively under mildly basic conditions over a short period.
Figure 5: Base-catalyzed aspartimide formation on an OtBu-protected aspartic acid residue and subsequent aminolysis by piperidine, yielding the corresponding piperidide; in dimethyl formamide (DMF) the β-piperidide may preferably be formed.
Figure 6
Figure 7: HPLC profiles of the crude N(15)FBP28WW.

Similar content being viewed by others

References

  1. Fischer, E. & Otto, E. Synthesis of the derivatives of some dipeptides. Ber. Deutsch. Chem. Ges. 36, 2106–2116 (1903).

    Article  CAS  Google Scholar 

  2. Bergmann, M. & Zervas, L. A general procedure of the peptide synthesis. Ber. Deutsch. Chem. Ges. 65, 1192–1201 (1932).

    Article  Google Scholar 

  3. Anderson, G.W., Blodinger, J. & Welcher, A.D. Tetraethylpyrophosphite as a reagent for peptide syntheses. J. Am. Chem. Soc. 74, 5309–5311 (1952).

    Article  CAS  Google Scholar 

  4. Siffert, R.H. & du Vigneaud, V. A new synthesis of carnosine, with some observations on the splitting of the benzyl group from carbobenzoxy derivatives and from benzylthioethers. J. Biol. Chem. 108, 753–761 (1935).

    Google Scholar 

  5. Merrifield, R.B. History of protein synthesis. In Houben-Weyl. Methods of Organic Chemistry. Vol. E 22b: Synthesis of Peptides and Peptidomimetics (eds. Goodman, M., Felix, A., Moroder, L. & Toniolo, C.) 3–41 (Thieme, Stuttgart, New York, 2002).

    Google Scholar 

  6. Du Vigneaud, V., Ressler, C., Swan, J.M., Roberts, C.W. & Katsoyannis, P.G. The synthesis of oxytocin. J. Am. Chem. Soc. 76, 3115–3121 (1954).

    Article  CAS  Google Scholar 

  7. Merrifield, R.B. Solid phase peptide synthesis. 1. Synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

    Article  CAS  Google Scholar 

  8. Atherton, E., Clive, D.L. & Sheppard, R.C. Polyamide supports for polypeptide-synthesis. J. Am. Chem. Soc. 97, 6584–6585 (1975).

    Article  CAS  Google Scholar 

  9. Atherton, E., Brown, E. & Sheppard, R.J. Internal association in solid-phase peptide-synthesis—synthesis of cytochrome-C residues 66-104 on polyamide supports. J. Chem. Soc. Chem. Commun. 1151–1152 (1981).

  10. Bayer, E. Towards the chemical synthesis of proteins. Angew. Chem. Int. Ed. Engl. 30, 113–129 (1991).

    Article  Google Scholar 

  11. Zalipsky, S., Chang, J.L., Albericio, F. & Barany, G. Preparation and applications of polyethylene glycol-polystyrene graft resin supports for solid-phase peptide-synthesis. React. Polym. 22, 243–258 (1994).

    Article  CAS  Google Scholar 

  12. Albericio,, F. & Giralt, E. Handles and supports. In Houben-Weyl. Methods of Organic Chemistry. Vol. E 22a: Synthesis of Peptides and Peptidomimetics (eds. Goodman, M., Felix, A., Moroder, L. & Toniolo, C.) 685–709 (Thieme, Stuttgart, New York, 2002).

    Google Scholar 

  13. Carpino, L.A. Oxidative reactions of hydrazines. 2. Isophthalimides. New protective groups on nitrogen. J. Am. Chem. Soc. 79, 98–101 (1957).

    Article  CAS  Google Scholar 

  14. Stewart, J.M. Protection strategies. In Houben-Weyl. Methods of Organic Chemistry. Vol. E 22a: Synthesis of Peptides and Peptidomimetics (eds. Goodman, M., Felix, A., Moroder, L. & Toniolo, C.) 726–739 (Thieme, Stuttgart, New York, 2002.

    Google Scholar 

  15. Carpino, L.A. 9-Fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J. Am. Chem. Soc. 92, 5748 (1970).

    Article  CAS  Google Scholar 

  16. Chang, C.D. & Meienhofer, J. Solid-phase peptide-synthesis using mild base cleavage of N-alphafluorenylmethyloxycarbonylamino acids, exemplified by a synthesis of dihydrosomatostatin. Int. J. Pept. Protein Res. 11, 246–249 (1978).

    Article  CAS  Google Scholar 

  17. Atherton, E. & Wellings, D.A. 9-Fluorenylmethoxycarbonyl/tert-butyl strategy. In Houben-Weyl. Methods of Organic Chemistry. Vol. E 22a: Synthesis of Peptides and Peptidomimetics (eds. Goodman, M., Felix, A., Moroder, L. & Toniolo, C.) 740–754 (Thieme, Stuttgart, New York, 2002).

    Google Scholar 

  18. Sheehan, J.C. & Hess, G.P. A new method of forming peptide bonds. J. Am. Chem. Soc. 77, 1067–1068 (1955).

    Article  CAS  Google Scholar 

  19. Wieland, T., Kern, W. & Sehring, R. Über anhydride von acylierten aminosäuren. Justus Liebigs Ann. Chem. 569, 117–121 (1950).

    Article  CAS  Google Scholar 

  20. Schwyzer, R., Iselin, B. & Feurer, M. Über aktivierte ester. 1. Aktivierte ester der hippursäure und ihre umsetzungen mit benzylamin. Helv. Chim. Acta 38, 69–79 (1955).

    Article  CAS  Google Scholar 

  21. Coste, J. Phosphonium salts. In Houben-Weyl. Methods of Organic Chemistry. Vol. E 22a: Synthesis of Peptides and Peptidomimetics (eds. Goodman, M., Felix, A., Moroder, L. & Toniolo, C.) 538–554 (Thieme, Stuttgart, New York, 2002).

    Google Scholar 

  22. Bienert, M., Henklein, P., Beyermann, M. & Carpino, L. A. Uronium/guanidinium salts. In Houben-Weyl. Methods of Organic Chemistry. Vol. E 22a: Synthesis of Peptides and Peptidomimetics (eds. Goodman, M., Felix, A., Moroder, L. & Toniolo, C.) 555–580 (Thieme, Stuttgart, New York, 2002).

    Google Scholar 

  23. Atherton, E. & Sheppard, R.C. Solid Phase Peptide Synthesis: A Practical Approach (IRL Press, Oxford, UK, 1999).

    Google Scholar 

  24. Pennington, M.W. & Dunn, B.M. Peptide Synthesis Protocols (Humana Press, Totowa, New Jersey, 1994).

    Book  Google Scholar 

  25. Fields, G.B. Solid-Phase Peptide Synthesis (Academic Press, New York, 1997).

    Google Scholar 

  26. Lloyd-Williams, P., Albericio, F. & Giralt, E. Chemical Approaches to the Synthesis of Peptides and Proteins (CRC Press, Boca Raton, Florida, 1997).

    Google Scholar 

  27. Chan, W.C. & White, P.D. Fmoc Solid Phase Peptide Synthesis: A Practical Approach (Oxford University Press, Oxford, UK, 2000).

    Google Scholar 

  28. Sewald, N. & Jakubke,, H.-D. Peptides: Chemistry and Biology (Wiley-VCH, Weinheim, 2002).

    Book  Google Scholar 

  29. Goodman, M., Felix, A., Moroder, L. & Toniolo, C. (eds.) Houben-Weyl. Methods of Organic Chemistry. Vol. E 22a–e: Synthesis of Peptides and Peptidomimetics (Thieme, Stuttgart, New York, 2002).

    Google Scholar 

  30. Amblard, M., Fehrentz, J.A., Martinez, J. & Subra, G. Methods and protocols of modern solid phase peptide synthesis. Mol. Biotechnol. 33, 239–254 (2006).

    Article  CAS  Google Scholar 

  31. Dawson, P.E. & Kent, S.B. Synthesis of native proteins by chemical ligation. Annu. Rev. Biochem. 69, 923–960 (2000).

    Article  CAS  Google Scholar 

  32. Bray, B.L. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat. Rev. Drug Discovery 2, 587–593 (2003).

    Article  CAS  Google Scholar 

  33. Vale, W., Spiess, J., Rivier, C. & Rivier, J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213, 1394–1397 (1981).

    Article  CAS  Google Scholar 

  34. Dauzenberg, F.M. & Hauger, R.L. The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol. Sci. 23, 71–77 (2002).

    Article  Google Scholar 

  35. Beyermann, M., Fechner, K., Furkert, J., Krause, E. & Bienert, M. A single-point slight alteration set as a tool for structure-activity relationship studies of ovine corticotropin- releasing factor. J. Med. Chem. 39, 3324–3330 (1996).

    Article  CAS  Google Scholar 

  36. Beyermann, M. et al. A role for a helical connector between two receptor binding sites of a long-chain peptide hormone. J. Biol. Chem. 275, 5702–5709 (2000).

    Article  CAS  Google Scholar 

  37. Beyermann, M. et al. Achieving signalling selectivity of ligands for the corticotropin-releasing factor type 1 receptor by modifying the agonist's signalling domain. Br. J. Pharmacol. 151, 851–859 (2007).

    Article  CAS  Google Scholar 

  38. Rivier, J.E. & Miranda, M.T.M. Solid-phase peptide synthesis at elevated temperature. In Houben-Weyl. Methods of Organic Chemistry. Vol. E 22a: Synthesis of Peptides and Peptidomimetics (eds. Goodman, M., Felix, A., Moroder, L. & Toniolo, C.) 806–813 (Thieme, Stuttgart, New York, 2002).

    Google Scholar 

  39. Kaiser, E., Colescot, R.L., Bossinge, C.D. & Cook, P.I. Color test for detection of free terminal amino groups in solid-phase synthesis of peptides. Anal. Biochem. 34, 595–598 (1970).

    Article  CAS  Google Scholar 

  40. Carpino, L.A., Beyermann, M., Wenschuh, H. & Bienert, M. Peptide synthesis via amino acid halides. Acc. Chem. Res. 29, 268–274 (1996).

    Article  CAS  Google Scholar 

  41. Gilon, C., Dechantsreiter, M.A., Burkhart, F., Friedler, A. & Kessler, H. Synthesis of N-alkylated peptides. In Houben-Weyl. Methods of Organic Chemistry. Vol. E 22c: Synthesis of Peptides and Peptidomimetics (eds. Goodman, M., Felix, A., Moroder, L. & Toniolo, C.) 215–271 (Thieme, Stuttgart, New York, 2002).

    Google Scholar 

  42. Hyde, C., Johnson, T., Owen, D., Quibell, M. & Sheppard, R.C. Some “difficult sequences” made easy. A study of interchain association in solid-phase peptide synthesis. Int. J. Peptide Protein Res. 43, 431–440 (1994).

    Article  CAS  Google Scholar 

  43. Fields, C. & Fields, G.B. Solvents for solid-phase peptide synthesis. In Peptide Synthesis Protocols (eds. Penningten, M.W. & Dunn, B.M.) 29–40 (Humana Press, Totowa, New Jersey, 1994).

    Chapter  Google Scholar 

  44. Beyermann, M. & Bienert, M. Synthesis of difficult peptide sequences: a comparison of Fmoc- and Boc-technique. Tetrahedron Lett. 33, 3745–3748 (1992).

    Article  CAS  Google Scholar 

  45. Narita, M., Fukunaga, T., Wakabayashi, A., Ishikawa, K. & Nakano, H. Syntheses and properties of tertiary peptide bond-containing polypeptides. 1. Syntheses and properties of oligo(L-leucine)S containing proline of glycyl-N-(2,4-dimethoxybenzyl)-L-leucine residues. Int. J. Peptide Protein Res. 23, 306–314 (1984).

    Article  CAS  Google Scholar 

  46. Johnson, T., Quibell, M. & Sheppard, R.C. N,O-bis Fmoc derivatives of N-(2-hydroxy-4-methoxybenzyl)-amino acids: useful intermediates in peptide synthesis. J. Pept. Sci. 1, 11–25 (1995).

    Article  CAS  Google Scholar 

  47. Quibell, M., Turnell, W.G. & Johnson, T. Preparation and purification of beta-amyloid (1-43) via soluble, amide backbone protected intermediates. J. Org. Chem. 59, 1745–1750 (1994).

    Article  CAS  Google Scholar 

  48. Wöhr, T. & Mutter, M. Pseudo-prolines in peptide synthesis: direct insertion of serine and threonine-derived oxazolidines in dipeptides. Tetrahedron Lett. 36, 3847–3848 (1995).

    Article  Google Scholar 

  49. Wöhr, T. et al. Pseudo-prolines as a solubilizing, structure-disrupting protection technique in peptide synthesis. J. Am. Chem. Soc. 118, 9218–9227 (1996).

    Article  Google Scholar 

  50. Toniolo, C., Bonora, G.M., Mutter, M. & Pillai, V.N.R. Linear oligopeptides. 78. The effect of the insertion of a proline residue on the solution conformation of host peptides. Macromol. Chem. Phys. 182, 2007–2014 (1981).

    Article  CAS  Google Scholar 

  51. Carpino, L.A. et al. Synthesis of “difficult” peptide sequences: application of a depsipeptide technique to the Jung-Redemann 10- and 26-mers and the amyloid peptide Aβ(1-42). Tetrahedron Lett. 45, 7519–7523 (2004).

    Article  CAS  Google Scholar 

  52. Mutter, M. et al. Switch peptides in statu nascendi: induction of conformational transitions relevant to degenerative diseases. Angew. Chem. Int. Ed. Engl. 43, 4172–4178 (2004).

    Article  CAS  Google Scholar 

  53. Sohma, Y., Sasaki, M., Hayashi, Y., Kimura, T. & Kiso, Y. Design and synthesis of a novel water-soluble Aβ(1-42) isopeptide: an efficient strategy for the preparation of Alzheimer's disease-related peptide, Aβ(1-42), via O-N intramolecular acyl migration reaction. Tetrahedron Lett. 45, 5965–5968 (2004).

    Article  CAS  Google Scholar 

  54. Coin, I. et al. Depsipeptide methodology for solid-phase peptide synthesis: circumventing side reactions and development of an automated technique via depsidipeptide units. J. Org. Chem. 71, 6171–6177 (2006).

    Article  CAS  Google Scholar 

  55. Sohma, Y. et al. 'O-Acyl isopeptide method' for the efficient synthesis of difficult sequence-containing peptides: use of 'O-acyl isodipeptide unit'. Tetrahedron Lett. 47, 3013–3017 (2006).

    Article  CAS  Google Scholar 

  56. Coin, I., Schmieder, P., Bienert, M. & Beyermann, M. The depsipeptide technique applied to peptide segment condensation: scope and limitations. J. Pept. Sci. DOI: 10.1002/psc.928 (2007).

  57. Taniguchi, A. et al. 'O-Acyl isopeptide method' for peptide synthesis: solvent effects in the synthesis of Aβ1-42 isopeptide using 'O-acyl isodipeptide unit'. J. Pept. Sci. DOI: 10.1002/psc.905 (2007).

  58. Pedroso, E., Grandas, A., de las Heras, X., Eritja, R. & Girald, E. Diketopiperazine formation in solid-phase peptide-synthesis using P-alkoxybenzyl ester resins and Fmoc-amino acids. Tetrahedron Lett. 27, 743–746 (1986).

    Article  CAS  Google Scholar 

  59. Carpino, L.A. et al. New family of base- and nucleophile-sensitive amino-protecting groups. A Michael-acceptor-based deblocking process. Practical utilization of the 1,1-dioxobenzo[b]thiophene-2-ylmethyloxycarbonyl (Bsmoc)group. J. Am. Chem. Soc. 119, 9915–9916 (1997).

    Article  CAS  Google Scholar 

  60. Fujino, M., Wakimasu, M., Shinagawa, S., Kitada, C. & Yajima, H. Synthesis of the nonacosapeptide corresponding to mammalian glucagons. Chem. Pharm. Bull. 26, 539–548 (1978).

    Article  CAS  Google Scholar 

  61. Marcias, M.J., Gervais, V., Civera, C. & Oschkinat, H. Structural analysis of WW domains and design of a WW prototype. Nat. Struct. Biol. 7, 375–379 (2000).

    Article  Google Scholar 

  62. Tremmel, S. et al. C-13-labeled tyrosine residues as local IR probes for monitoring conformational changes in peptides and proteins. Angew. Chem. Int. Ed. Engl. 44, 4631–4635 (2005).

    Article  CAS  Google Scholar 

  63. Nicolás, E., Pedroso, E. & Girald, E. Formation of aspartimide peptides in Asp-Gly sequences. Tetrahedron Lett. 30, 497–500 (1989).

    Article  Google Scholar 

  64. Dölling, R. et al. Piperidine-mediated side product formation for Asp(OtBu)-containing peptides. J. Chem. Soc. Chem. Commun. 853–854 (1994).

  65. Offer, J., Quibell, M. & Johnson, T. On-resin solid-phase synthesis of asparagine N-linked glycopeptides: use of N-(2-acetoxy-4-methoxybenzyl)(AcHmb) aspartyl amide-bond protection to prevent unwanted aspartimide formation. J. Chem. Soc. Perkin Trans. 1, 175–182 (1996).

    Article  Google Scholar 

  66. Wade, J.D., Bedford, J., Sheppard, R.C. & Tregear, G.W. DBU as an N-alpha-deprotecting reagent for the fluorenylmethoxycarbonyl group in continuous flow solid-phase peptide synthesis. Pept. Res. 4, 194–199 (1991).

    CAS  Google Scholar 

  67. Kates, S.A., Solé, N.A., Beyermann, M., Barany, G. & Albericio, F. Optimized preparation of deca(L-alanyl)-L-valinamide by 9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase synthesis on polyethylene glycol-polystyrene (PEG-PS) graft supports, with 1,8-diazobicyclo[5.4.0]-undec-7-ene (DBU) deprotection. Pept. Res. 9, 106–113 (1996).

    CAS  PubMed  Google Scholar 

  68. Thaler, A., Seebach, D. & Cardinaux, F. Improvement of degree of resin swelling and of efficiency of coupling in solid-phase synthesis. Helv. Chim. Acta 74, 628–643 (1991).

    Article  CAS  Google Scholar 

  69. Pugh, K.C., York, E.J. & Stewart, J.M. Effects of resin swelling and substitution on solid phase synthesis. Int. J. Pept. Protein Res. 40, 208–213 (1992).

    Article  CAS  Google Scholar 

  70. Pennington, M.W. & Byrnes, M.E. Procedures to improve difficult couplings. In Peptide Synthesis Protocols (eds. Pennington, M.W. & Dunn, B.M.) 1–16 (Humana Press, Totowa, New Jersey, 1994).

    Chapter  Google Scholar 

  71. Wade, J.D., Mathieu, M.N., Macris, M. & Tregear, G.W. Base-induced side reactions in Fmoc-solid phase peptide synthesis: minimization by use of piperazine as N-alpha-deprotection reagent. Lett. Pept. Sci. 7, 107–112 (2000).

    CAS  Google Scholar 

  72. Alsina, J., Giralt, E. & Albericio, F. Use of N-tritylamino acids and PyAOP for the supression of diketopiperazine formation in Fmoc/(t)Bu solid-phase peptide synthesis using alkoxybenzyl ester anchoring linkages. Tetrahedron Lett. 37, 4195–4198 (1996).

    Article  CAS  Google Scholar 

  73. Schnölzer, M., Alewood, P., Jones, A., Alewood, D. & Kent, S.B.H. In situ neutralization in Boc-chemistry solid-phase peptide synthesis—rapid, high-yield assembly of difficult sequences. Int. J. Peptide Protein Res. 40, 180–193 (1992).

    Article  Google Scholar 

  74. Krause, E. et al. Studies on thioether modifications: S-oxidation, S-oxide reduction and regeneration of methionine peptides from their S-benzyl-sulfonium derivatives. In Peptides: Chemistry and Biology (eds. Smith, J.A. & Rivier, J.E.) 478–479 (ESCOM, Leiden, the Netherlands, 1992).

    Chapter  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge contributions of S. Tremmel, E. Krause, C.D. Sferdean and L.A. Carpino. We thank A. Klose and D. Krause for technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft, grant no. FOR 299/2-2 TP2 and Be 1434/5-2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irene Coin or Michael Beyermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coin, I., Beyermann, M. & Bienert, M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2, 3247–3256 (2007). https://doi.org/10.1038/nprot.2007.454

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.454

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing