Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Derivation of human embryonic stem cells from single blastomeres

Abstract

This protocol details a method to derive human embryonic stem (hES) cells from single blastomeres. Blastomeres are removed from morula (eight-cell)-stage embryos and cultured until they form multicell aggregates. These blastomere-derived cell aggregates are plated into microdrops seeded with mitotically inactivated feeder cells, and then connected with neighboring microdrops seeded with green fluorescent protein-positive hES cells. The resulting blastomere-derived outgrowths are cultured in the same manner as blastocyst-derived hES cells. The whole process takes about 3–4 months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of blastomere development before plating.
Figure 2: Plate setup for culture of blastomere-derived cell aggregates.
Figure 3: Examples of outgrowth after plating onto PMEFs.

Similar content being viewed by others

References

  1. Handyside, A.H. et al. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344, 768–770 (1990).

    Article  CAS  PubMed Central  Google Scholar 

  2. Magli, M.C. et al. Cryopreservation of biopsied embryos at the blastocyst stage. Hum. Reprod. 21, 2656–2660 (2006).

    Article  CAS  Google Scholar 

  3. Hardy, J., Martin, K.L., Leese, H., Winston, R.M. & Handyside., A. Human preimplantation development in vitro is not adversely affected by biopsy at the 8-cell stage. Hum. Reprod. 5, 708–714 (1990).

    Article  CAS  Google Scholar 

  4. Staessen, C. et al. Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Hum. Reprod. 19, 2849–2858 (2004).

    Article  Google Scholar 

  5. Klimanskaya, I., Chung, Y., Becker, S., Lu, S.-J. & Lanza, R. Human embryonic stem cells derived from single blastomeres. Nature 444, 481–485 (2006).

    Article  CAS  Google Scholar 

  6. Tarkowski, A., Ozdzenski, W. & Czolowska, R. How many blastomeres of the 4-cell embryo contribute to the mouse body? Int. J. Dev. Biol. 45, 811–816 (2001).

    CAS  PubMed  Google Scholar 

  7. Kelly, S.J. Studies of the developmental potential of 4- and 8-cell stage mouse blastomeres. J. Exp. Zool. 200, 365–376 (1977).

    Article  CAS  Google Scholar 

  8. Tarkowski, A.K. & Wrobleska, J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J. Embryol. Exp. Morphol. 18, 155–180 (1967).

    CAS  PubMed  Google Scholar 

  9. Tarkowski, A.K. Experiments on the development of isolated blastomeres of mouse eggs. Nature 184, 1286–1287 (1959).

    Article  CAS  Google Scholar 

  10. Tarkowski, A.K. Experimental studies on regulation in the development of isolated blastomeres of mouse eggs. Acta Theriol. 3, 191–267 (1959).

    Article  Google Scholar 

  11. Rossant, J. Postimplantation development of blastomeres isolated from 4- and 8-cell mouse eggs. J. Embryol. Exp. Morphol. 36, 283–290 (1976).

    CAS  PubMed  Google Scholar 

  12. Papaiannou, V.E., Mkandawire, J. & Biggers, J.D. Development and phenotypic variability of genetically identical half mouse embryos. Development 106, 817–827 (1989).

    Google Scholar 

  13. Deb, K., Sivaguru, M., Yong, H.Y & Roberts, R.M. Cdx2 gene expression and trophectoderm lineage specification in mouse embryos. Science 311, 992–996 (2006).

    Article  CAS  Google Scholar 

  14. Fujimori, T., Kurotaki, Y., Miyazaki, J. & Nabeshima, Y. Analysis of cell lineage in two-and four-cell mouse embryos. Development 130, 5113–5122 (2003).

    Article  CAS  Google Scholar 

  15. Piotrowska-Nitsche, K., Perea-Gomez, A., Haraguchi, S. & Zernicka-Goetz, M. Four-cell stage mouse blastomeres have different developmental properties. Development 132, 479–490 (2005).

    Article  CAS  Google Scholar 

  16. Moore, N.W., Adams, C.E. & Rowson, L.E. Developmental potential of single blastomeres of the rabbit egg. J. Reprod. Fertil. 17, 527–531 (1968).

    Article  CAS  Google Scholar 

  17. Willadsen, S.M. The developmental capacity of blastomeres from 4- and 8-cell sheep embryos. J. Embryol. Exp. Morphol. 65, 165–172 (1981).

    CAS  PubMed  Google Scholar 

  18. Cauffman, G., Van de Velde, H., Liebaers, I. & Van Steirteghem, A. Oct-4 mRNA and protein expression during human preimplantation development. Mol. Hum. Reprod. 11, 173–181 (2005).

    Article  CAS  Google Scholar 

  19. Chung, Y. et al. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439, 145–147 (2006).

    Article  Google Scholar 

  20. Illmensee, K., Kaskar, K. & Zavos, P.M. In vitro developmental potential of individual mouse blastomeres cultured with and without zona pellucida. Reprod. Biomed. 13, 284–294 (2006).

    Article  CAS  Google Scholar 

  21. Fong, C.-Y, Richards, M. & Bongso, A. Unsuccessful derivation of human embryonic stem cell lines from pairs of human blastomeres. Reprod. Biomed. 13, 295–300 (2006).

    Article  Google Scholar 

  22. Wakayama, S. et al. Efficient establishment of mouse embryonic stem cell lines from single blastomeres and polar bodies. Stem Cells 25, 986–993 (2007).

    Article  CAS  Google Scholar 

  23. Ogawa, K. et al. A novel mechanism for regulating clonal propagation of mouse ES cells. Genes Cells 9, 471–477 (2004).

    Article  CAS  Google Scholar 

  24. Klimanskaya, I. & McMahon, J. Approaches for derivation and maintenance of human ES cells: detailed procedures and alternatives. In Handbook of Stem Cells Vol. 1, Ch. 41 (eds. Lanza, R. et al.) 437–449 (Academic Press, San Diego, CA, 2004).

    Chapter  Google Scholar 

  25. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  Google Scholar 

  26. Wood, S.A., Allen, N.D., Rossant, A., Auerbach, A. & Nagy, A. Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature 365, 87–89 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Tong Li and Marc Maserati for help with cell culture, karyotyping and embryo manipulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lanza.

Ethics declarations

Competing interests

The authors are employees of Advanced Cell Technology, a biotechnology company in the field of stem cell research and regenerative medicine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimanskaya, I., Chung, Y., Becker, S. et al. Derivation of human embryonic stem cells from single blastomeres. Nat Protoc 2, 1963–1972 (2007). https://doi.org/10.1038/nprot.2007.274

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.274

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing