Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cyanobacterial photoprotection by the orange carotenoid protein

Abstract

In photosynthetic organisms, the production of dangerous oxygen species is stimulated under high irradiance. To cope with this stress, these organisms have evolved photoprotective mechanisms. One type of mechanism functions to decrease the energy arriving at the photochemical centres by increasing thermal dissipation at the level of antennae. In cyanobacteria, the trigger for this mechanism is the photoactivation of a soluble carotenoid protein, the orange carotenoid protein (OCP), which is a structurally and functionally modular protein. The inactive orange form (OCPo) is compact and globular, with the carotenoid spanning the effector and the regulatory domains. In the active red form (OCPr), the two domains are completely separated and the carotenoid has translocated entirely into the effector domain. The activated OCPr interacts with the phycobilisome (PBS), the cyanobacterial antenna, and induces excitation-energy quenching. A second protein, the fluorescence recovery protein (FRP), dislodges the active OCPr from the PBSs and accelerates its conversion to the inactive OCP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structures of the OCPo, RCP (NTD) and FRP.
Figure 2: The Synechocystis sp. PCC 6803 PBS.
Figure 3: Working model of OCP-related NPQ.
Figure 4: Models of OCP binding to the PBSs.

Similar content being viewed by others

References

  1. Holt, T. K. & Krogmann, D. W. A carotenoid-protein from cyanobacteria. Biochim. Biophys. Acta 637, 408–414 (1981).

    CAS  Google Scholar 

  2. Wu, Y. P. & Krogmann, D. W. The orange carotenoid protein of Synechocystis PCC 6803. Biochim. Biophys. Acta 1322, 1–7 (1997).

    CAS  PubMed  Google Scholar 

  3. Kerfeld, C. A., Wu, Y. P., Chan, C., Krogmann, D. W. & Yeates, T. O. Crystals of the carotenoid protein from Arthrospira maxima containing uniformly oriented pigment molecules. Acta Crystallogr. D Biol. Crystallogr. 53, 720–723 (1997).

    CAS  PubMed  Google Scholar 

  4. Kerfeld, C. A. et al. The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure 11, 55–65 (2003).

    CAS  PubMed  Google Scholar 

  5. Hihara, Y., Kamei, A., Kanehisa, M., Kaplan, A. & Ikeuchi, M. DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13, 793–806 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fulda, S. et al. Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics 6, 2733–2745 (2006).

    CAS  PubMed  Google Scholar 

  7. Kerfeld, C. A. Structure and function of the water-soluble carotenoid-binding proteins of cyanobacteria. Photosynth. Res. 81, 215–225 (2004).

    CAS  PubMed  Google Scholar 

  8. Kerfeld, C. A. Water-soluble carotenoid proteins of cyanobacteria. Arch. Biochem. Biophys. 430, 2–9 (2004).

    CAS  PubMed  Google Scholar 

  9. Chábera, P., Durchan, M., Shih, P. M., Kerfeld, C. A. & Polívka, T. Excited-state properties of the 16kDa red carotenoid protein from Arthrospira maxima. Biochim. Biophys. Acta 1807, 30–35 (2011).

    PubMed  Google Scholar 

  10. Wilson, A. et al. A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18, 992–1007 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Krieger-Liszkay, A., Fufezan, C. & Trebst, A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res. 98, 551–564 (2008).

    CAS  PubMed  Google Scholar 

  12. Vass, I. Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex. Physiol. Plant. 142, 6–16 (2011).

    CAS  PubMed  Google Scholar 

  13. Vass, I. Molecular mechanisms of photodamage in the photosystem II complex. Biochim. Biophys. Acta 1817, 209–217 (2012).

    CAS  PubMed  Google Scholar 

  14. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria Vol. 40 (eds Demmig-Adams, B., Garab, G., Adams III W. W. & Govindjee ) (Springer, 2014).

    Google Scholar 

  15. Derks, A., Schaven, K. & Bruce, D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim. Biophys. Acta 1847, 468–485 (2015).

    CAS  PubMed  Google Scholar 

  16. Erickson, E., Wakao, S. & Niyogi, K. K. Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J. 82, 449–465 (2015).

    CAS  PubMed  Google Scholar 

  17. Niyogi, K. K. & Truong, T. B. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 16, 307–314 (2013).

    CAS  PubMed  Google Scholar 

  18. Ruban, A. V., Johnson, M. P. & Duffy, C. D. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta 1817, 167–181 (2012).

    CAS  PubMed  Google Scholar 

  19. Adir, N. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth. Res. 85, 15–32 (2005).

    CAS  PubMed  Google Scholar 

  20. Glazer, A. N. Phycobilisome — a macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta 768, 29–51 (1984).

    CAS  Google Scholar 

  21. Grossman, A. R., Schaefer, M. R., Chiang, G. G. & Collier, J. L. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev. 57, 725–749 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. MacColl, R. Cyanobacterial phycobilisomes. J. Struct. Biol. 124, 311–334 (1998).

    CAS  PubMed  Google Scholar 

  23. Delphin, E., Duval, J. C., Etienne, A. L. & Kirilovsky, D. State transitions or ΔpH-dependent quenching of photosystem II fluorescence in red algae. Biochemistry 35, 9435–9445 (1996).

    CAS  PubMed  Google Scholar 

  24. Delphin, E., Duval, J. C., Etienne, A. L. & Kirilovsky, D. ΔpH-dependent photosystem II fluorescence quenching induced by saturating, multiturnover pulses in red algae. Plant Physiol. 118, 103–113 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Krupnik, T. et al. A reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, Cyanidioschyzon merolae. J. Biol. Chem. 288, 23529–23542 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. El Bissati, K., Delphin, E., Murata, N., Etienne, A. & Kirilovsky, D. Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803: involvement of two different mechanisms. Biochim. Biophys. Acta 1457, 229–242 (2000).

    CAS  PubMed  Google Scholar 

  27. Rakhimberdieva, M. G., Stadnichuk, I. N., Elanskaya, I. V. & Karapetyan, N. V. Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-deficient mutant of Synechocystis sp. FEBS Lett. 574, 85–88 (2004).

    CAS  PubMed  Google Scholar 

  28. Wilson, A., Boulay, C., Wilde, A., Kerfeld, C. A. & Kirilovsky, D. Light-induced energy dissipation in iron-starved cyanobacteria: roles of OCP and IsiA proteins. Plant Cell 19, 656–672 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Scott, M. et al. Mechanism of the down regulation of photosynthesis by blue light in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 45, 8952–8958 (2006).

    CAS  PubMed  Google Scholar 

  30. Boulay, C., Wilson, A., D'Haene, S. & Kirilovsky, D. Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria. Proc. Natl Acad. Sci. USA 107, 11620–11625 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gorbunov, M. Y., Kuzminov, F. I., Fadeev, V. V., Kim, J. D. & Falkowski, P. G. A kinetic model of non-photochemical quenching in cyanobacteria. Biochim. Biophys. Acta 1807, 1591–1599 (2011).

    CAS  PubMed  Google Scholar 

  32. Rakhimberdieva, M. G., Elanskaya, I. V., Vermaas, W. F. J. & Karapetyan, N. V. Carotenoid-triggered energy dissipation in phycobilisomes of Synechocystis sp. PCC 6803 diverts excitation away from reaction centers of both photosystems. Biochim. Biophys. Acta 1797, 241–249 (2010).

    CAS  PubMed  Google Scholar 

  33. Rakhimberdieva, M. G., Vavilin, D. V., Vermaas, W. F., Elanskaya, I. V. & Karapetyan, N. V. Phycobilin/chlorophyll excitation equilibration upon carotenoid-induced non-photochemical fluorescence quenching in phycobilisomes of the cyanobacterium Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1767, 757–765 (2007).

    CAS  PubMed  Google Scholar 

  34. Boulay, C., Abasova, L., Six, C., Vass, I. & Kirilovsky, D. Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria. Biochim. Biophys. Acta 1777, 1344–1354 (2008).

    CAS  PubMed  Google Scholar 

  35. Wilson, A. et al. A photoactive carotenoid protein acting as light intensity sensor. Proc. Natl Acad. Sci. USA. 105, 12075–12080 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gwizdala, M., Wilson, A. & Kirilovsky, D. In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the orange carotenoid protein in Synechocystis PCC 6803. Plant Cell 23, 2631–2643 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Punginelli, C., Wilson, A., Routaboul, J. M. & Kirilovsky, D. Influence of zeaxanthin and echinenone binding on the activity of the orange carotenoid protein. Biochim. Biophys. Acta 1787, 280–288 (2009).

    CAS  PubMed  Google Scholar 

  38. Sedoud, A. et al. The cyanobacterial photoactive orange carotenoid protein is an excellent singlet oxygen quencher. Plant Cell 26, 1781–1791 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sutter, M. et al. Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria. Proc. Natl Acad. Sci. USA 110, 10022–10027 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gwizdala, M., Wilson, A., Omairi-Nasser, A. & Kirilovsky, D. Characterization of the Synechocystis PCC 6803 fluorescence recovery protein involved in photoprotection. Biochim. Biophys. Acta 1827, 348–354 (2013).

    CAS  PubMed  Google Scholar 

  41. Kuzminov, F. I. et al. Investigation of OCP-triggered dissipation of excitation energy in PSI/PSII-less Synechocystis sp. PCC 6803 mutant using non-linear laser fluorimetry. Biochim. Biophys. Acta 1817, 1012–1021 (2012).

    CAS  PubMed  Google Scholar 

  42. Rakhimberdieva, M. G., Kuzminov, F. I., Elanskaya, I. V. & Karapetyan, N. V. Synechocystis sp. PCC 6803 mutant lacking both photosystems exhibits strong carotenoid-induced quenching of phycobilisome fluorescence. FEBS Lett. 585, 585–589 (2011).

    CAS  PubMed  Google Scholar 

  43. Maksimov, E. G. et al. Features of temporal behavior of fluorescence recovery in Synechocystis sp. PCC6803. Photosynth. Res. 125, 167–178 (2015).

    CAS  PubMed  Google Scholar 

  44. Rakhimberdieva, M. G., Bolychevtseva, Y. V., Elanskaya, I. V. & Karapetyan, N. V. Protein-protein interactions in carotenoid triggered quenching of phycobilisome fluorescence in Synechocystis sp. PCC 6803. FEBS Lett. 581, 2429–2433 (2007).

    CAS  PubMed  Google Scholar 

  45. Liu, H. et al. Mass spectrometry footprinting reveals the structural rearrangements of cyanobacterial orange carotenoid protein upon light activation. Biochim. Biophys. Acta 1837, 1955–1963 (2014).

    CAS  PubMed  Google Scholar 

  46. Gupta, S. et al. Local and global structural drivers for the photoactivation of the orange carotenoid protein. Proc. Natl Acad. Sci. USA 112, E5567–E5574 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Leverenz, R. L. et al. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science 348, 1463–1466 (2015).

    CAS  PubMed  Google Scholar 

  48. Wilson, A., Punginelli, C., Couturier, M., Perrau, F. & Kirilovsky, D. Essential role of two tyrosines and two tryptophans on photoprotection activity of the orange carotenoid protein. Biochim. Biophys. Acta 1807, 293–301 (2011).

    CAS  PubMed  Google Scholar 

  49. Maksimov, E. G. et al. A comparative study of three signaling forms of the orange carotenoid protein. Photosynth. Res. 130, 389–401 (2016).

    CAS  PubMed  Google Scholar 

  50. Leverenz, R. L. et al. Structural and functional modularity of the orange carotenoid protein: distinct roles for the N- and C-terminal domains in cyanobacterial photoprotection. Plant Cell 26, 426–437 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kish, E., Pinto, M. M., Kirilovsky, D., Spezia, R. & Robert, B. Echinenone vibrational properties: from solvents to the orange carotenoid protein. Biochim. Biophys. Acta 1847, 1044–1054 (2015).

    CAS  PubMed  Google Scholar 

  52. Otsuka, M., Mori, Y. & Takano, K. Theoretical study on photophysical properties of 3′-hydroxyechinenone and the effects of interactions with orange carotenoid protein. Chem. Phys. Lett. 647, 95–102 (2016).

    CAS  Google Scholar 

  53. King, J. D., Liu, H., He, G., Orf, G. S. & Blankenship, R. E. Chemical activation of the cyanobacterial orange carotenoid protein. FEBS Lett. 588, 4561–4565 (2014).

    CAS  PubMed  Google Scholar 

  54. Cogdell, R. J. & Gardiner, A. T. Activated OCP unlocks nonphotochemical quenching in cyanobacteria. Proc. Natl Acad. Sci. USA 112, 12547–12548 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wilson, A. et al. The essential role of the N-terminal domain of the orange carotenoid protein in cyanobacterial photoprotection: importance of a positive charge for phycobilisome binding. Plant Cell 24, 1972–1983 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, H. Z. et al. Dramatic domain rearrangements of the cyanobacterial orange carotenoid protein upon photoactivation. Biochemistry 55, 1003–1009 (2016).

    CAS  PubMed  Google Scholar 

  57. Maksimov, E. G. et al. The time course of non-photochemical quenching in phycobilisomes of Synechocystis sp. PCC6803 as revealed by picosecond time-resolved fluorimetry. Biochim. Biophys. Acta 1837 1540–1547 (2014).

    CAS  PubMed  Google Scholar 

  58. Tian, L. et al. Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys. J. 102, 1692–1700 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tian, L. et al. Site, rate, and mechanism of photoprotective quenching in cyanobacteria. J. Am. Chem. Soc. 133, 18304–18311 (2011).

    CAS  PubMed  Google Scholar 

  60. Tian, L., van Stokkum, I. H., Koehorst, R. B. & van Amerongen, H. Light harvesting and blue-green light induced non-photochemical quenching in two different C-phycocyanin mutants of Synechocystis PCC 6803. J. Phys. Chem. B 117, 11000–11006 (2013).

    CAS  PubMed  Google Scholar 

  61. Harris, D. et al. Orange carotenoid protein burrows into the phycobilisome to provide photoprotection. Proc. Natl Acad. Sci. USA 113, E1655–E1662 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jallet, D. et al. Specificity of the cyanobacterial orange carotenoid protein: influences of orange carotenoid protein and phycobilisome structures. Plant Physiol. 164, 790–804 (2014).

    CAS  PubMed  Google Scholar 

  63. Zhang, H., Cui, W., Gross, M. L. & Blankenship, R. E. Native mass spectrometry of photosynthetic pigment-protein complexes. FEBS Lett. 587, 1012–1020 (2013).

    CAS  PubMed  Google Scholar 

  64. Dong, C. & Zhao, J. ApcD is required for state transition but not involved in blue-light induced quenching in the cyanobacterium Anabaena sp. PCC7120. Chi. Sci. Bull. 53, 3422–3424 (2008).

    CAS  Google Scholar 

  65. Jallet, D., Gwizdala, M. & Kirilovsky, D. ApcD, ApcF and ApcE are not required for the orange carotenoid protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803. Biochim. Biophys. Acta 1817, 1418–1427 (2012).

    CAS  PubMed  Google Scholar 

  66. Stadnichuk, I. N. et al. Site of non-photochemical quenching of the phycobilisome by orange carotenoid protein in the cyanobacterium Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1917, 1436–1445 (2012).

    Google Scholar 

  67. Stadnichuk, I. N. et al. Fluorescence quenching of the phycobilisome terminal emitter LCM from the cyanobacterium Synechocystis sp. PCC 6803 detected in vivo and in vitro. J. Photochem. Photobiol. B 125, 137–145 (2013).

    CAS  PubMed  Google Scholar 

  68. Berera, R., Gwizdala, M., van Stokkum, I. H., Kirilovsky, D. & van Grondelle, R. Excited states of the inactive and active forms of the orange carotenoid protein. J. Phys. Chem. B 117, 9121–9128 (2013).

    CAS  PubMed  Google Scholar 

  69. Berera, R. et al. The photophysics of the orange carotenoid protein, a light-powered molecular switch. J. Phys. Chem. B 116, 2568–2574 (2012).

    CAS  PubMed  Google Scholar 

  70. Niedzwiedzki, D. M., Liu, H. & Blankenship, R. E. Excited state properties of 3′-hydroxyechinenone in solvents and in the orange carotenoid protein from Synechocystis sp. PCC 6803. J. Phys. Chem. B 118, 6141–6149 (2014).

    CAS  PubMed  Google Scholar 

  71. Polivka, T., Chabera, P. & Kerfeld, C. A. Carotenoid-protein interaction alters the S(1) energy of hydroxyechinenone in the orange carotenoid protein. Biochim. Biophys. Acta 1827, 248–254 (2013).

    CAS  PubMed  Google Scholar 

  72. Wang, Q. & Moerner, W. E. Dissecting pigment architecture of individual photosynthetic antenna complexes in solution. Proc. Natl Acad. Sci. USA 112, 13880–13885 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Stadnichuk, I. N. et al. Electronic coupling of the phycobilisome with the orange carotenoid protein and fluorescence quenching. Photosynth. Res. 124, 315–335 (2015).

    CAS  PubMed  Google Scholar 

  74. Zhang, H. et al. Molecular mechanism of photoactivation and structural location of the cyanobacterial orange carotenoid protein. Biochemistry 53, 13–19 (2013).

    CAS  PubMed  Google Scholar 

  75. Zlenko, D. V., Krasilnikov, P. M. & Stadnichuk, I. N. Role of inter-domain cavity in the attachment of the orange carotenoid protein to the phycobilisome core and to the fluorescence recovery protein. J. Biomol. Struct. Dyn. 34, 486–496 (2016).

    CAS  PubMed  Google Scholar 

  76. Chang, L. et al. Structural organization of an intact phycobilisome and its association with photosystem II. Cell Res. 25, 726–737 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kawasaki, S., Mizuguchi, K., Sato, M., Kono, T. & Shimizu, H. A novel astaxanthin-binding photooxidative stress-inducible aqueous carotenoprotein from a eukaryotic microalga isolated from asphalt in midsummer. Plant Cell Physiol. 54, 1027–1040 (2013).

    CAS  PubMed  Google Scholar 

  78. Pilbrow, J., Garama, D. & Carne, A. Carotenoid-binding proteins; accessories to carotenoid function. Acta Biochim. Pol. 59, 163–165 (2012).

    CAS  PubMed  Google Scholar 

  79. Kerfeld, C. A. & Kirilovsky, D. in Advances in Botanical Research: Genomics in Cyanobacteria Vol. 65 (eds Chauvat, F. & Cassier-Chauvat, C. ) 1–26 (Elsevier, 2013).

    Google Scholar 

  80. Kirilovsky, D. & Kerfeld, C. A. The orange carotenoid protein: a blue-green light photoactive protein. Photochem. Photobiol. Sci. 12, 1135–1143 (2013).

    CAS  PubMed  Google Scholar 

  81. Lopez-Igual, R. et al. Different functions of the paralogs to the N-terminal domain of the Orange Carotenoid Protein in the cyanobacterium Anabaena sp. PCC 7120. Plant Physiol. 171, 1852–1866 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. Melnicki, M. R. et al. Structure, diversity, and evolution of a new family of soluble carotenoid binding proteins in cyanobacteria. Mol. Plant 9, 1379–1394 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Sutter for assistance in figure preparation. D.K. is supported by the Commissariat à l'Energie Atomique, the Centre National de la Recherche Scientifique, and the Agence Nationale de la Recherche (project CYANOPROTECT). D.K.'s work was also partially supported by EU networks INTRO2 and HARVEST. C.A.K. is supported by the Office of Science of the US Department of Energy DE-FG02-91ER20021 with infrastructure support from MSU AgBIO Research. The authors thank all of the students, collaborators and colleagues that were involved in the characterization of the structure and function of the OCP.

Author information

Authors and Affiliations

Authors

Contributions

C.A.K. and D.K. wrote the article.

Corresponding authors

Correspondence to Diana Kirilovsky or Cheryl A. Kerfeld.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirilovsky, D., Kerfeld, C. Cyanobacterial photoprotection by the orange carotenoid protein. Nature Plants 2, 16180 (2016). https://doi.org/10.1038/nplants.2016.180

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing