Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Acute enhancement of the upper critical field for superconductivity approaching a quantum critical point in URhGe

Abstract

When a pure material is tuned to the point where a continuous phase-transition line is crossed at zero temperature, known as a quantum critical point (QCP), completely new correlated quantum ordered states can form1,2,3,4,5,6,7. These phases include exotic forms of superconductivity. However, as superconductivity is generally suppressed by a magnetic field, the formation of superconductivity ought not to be possible at extremely high field8. Here, we report that as we tune the ferromagnet, URhGe, towards a QCP by applying a component of magnetic field in the material’s easy magnetic plane, superconductivity survives in progressively higher fields applied simultaneously along the material’s magnetic hard axis. Thus, although superconductivity never occurs above a temperature of 0.5 K, we find that it can survive in extremely high magnetic fields, exceeding 28 T.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The schematic field–temperature phase diagram of URhGe for magnetic fields in the b c plane.
Figure 2: Resistivity measurements for fields rotated through different angles, γ, from the b axis in the a b plane.
Figure 3: The magnetic-field dependence of the geometric average of the coherence length, assuming constant anisotropy.

Similar content being viewed by others

References

  1. Jaccard, D., Behnia, K. & Sierro, J. Pressure induced heavy fermion superconductivity of CeCu2Ge2 . Phys. Lett. A 163, 475–480 (1992).

    Article  ADS  Google Scholar 

  2. Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    Article  ADS  Google Scholar 

  3. Harrison, N., Jaime, M. & Mydosh, J. A. Re-entrant hidden order at a metamagnetic quantum critical end point. Phys. Rev. Lett. 90, 96402 (2003).

    Article  ADS  Google Scholar 

  4. Lévy, F., Sheikin, I., Grenier, B. & Huxley, A. D. Magnetic field-induced superconductivity in the ferromagnet URhGe. Science 309, 1343–1346 (2005).

    Article  ADS  Google Scholar 

  5. Park, T. et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5 . Nature 440, 65–68 (2006).

    Article  ADS  Google Scholar 

  6. Knebel, G., Aoki, D., Braithwaite, D., Salce, B. & Flouquet, J. Coexistence of antiferromagnetism and superconductivity in CeRhIn5 under high pressure and magnetic field. Phys. Rev. B 74, 020501R (2006).

    Article  ADS  Google Scholar 

  7. Borzi, R. A. et al. Formation of a nematic fluid at high fields in Sr3Ru2O7. Science 315, 214–217 (2007)

    Article  ADS  Google Scholar 

  8. Coleman, P. & Schofield, A. J. Quantum criticality. Nature 433, 226–299 (2005).

    Article  ADS  Google Scholar 

  9. Roussev, R. & Millis, A. J. Quantum critical effects on transition temperature of magnetically mediated p-wave superconductivity. Phys. Rev. B 63, 140504 (2001).

    Article  ADS  Google Scholar 

  10. Fay, D. & Appel, J. Coexistence of p-state superconductivity and itinerant ferromagnetism. Phys. Rev. B 22, 3173–3182 (1980).

    Article  ADS  Google Scholar 

  11. Monthoux, P. & Lonzarich, G. G. p and d-wave superconductivity in quasi-two-dimensional metals. Phys. Rev. B 59, 14598–14605 (2001).

    Article  ADS  Google Scholar 

  12. Millis, A. J., Sachdev, S. & Varma, C. M. Inelastic scattering and pair breaking in anisotropic and isotropic superconductors. Phys. Rev. B 37, 4975–4986 (1988).

    Article  ADS  Google Scholar 

  13. Kawasaki, S. et al. New superconducting and magnetic phases emerge on the magnetic criticality in CeIn3 . J. Phys. Soc. Japan 73, 1647–1650 (2004).

    Article  ADS  Google Scholar 

  14. Sheikin, I. et al. Superconductivity, upper critical field and anomalous normal state in CePd2Si2 near the quantum critical point. J. Low Temp. Phys. 122, 591–604 (2001).

    Article  ADS  Google Scholar 

  15. Aoki, D. et al. Coexistence of superconductivity and ferromagnetism in URhGe. Nature 413, 613–616 (2001).

    Article  ADS  Google Scholar 

  16. Belitz, D., Kirkpatrick, T. R. & Rollbühler, J. Tricritical behavior in itinerant quantum ferromagnets. Phys. Rev. Lett. 94, 24706 (2005).

    Article  Google Scholar 

  17. Hardy, F. & Huxley, A. D. p-wave superconductivity in the ferromagnetic superconductor URhGe. Phys. Rev. Lett. 94, 247006 (2005).

    Article  ADS  Google Scholar 

  18. Prohammer, M. & Carbotte, J. P. Upper critical field of s- and d-wave superconductors with anisotropic effective mass. Phys. Rev. B 42, 2032–2040 (1990).

    Article  ADS  Google Scholar 

  19. Kita, T. & Arai, M. Ab initio calculations of Hc2 in type-II superconductors: Basic formalism and model calculations. Phys. Rev. B 70, 224522 (2004).

    Article  ADS  Google Scholar 

  20. Werthamer, N. R. & McMillan, W. L. Temperature and purity dependence of the superconducting critical field, Hc2. IV. Strong coupling effects. Phys. Rev. 158, 415–417 (1967).

    Article  ADS  Google Scholar 

  21. Scharnberg, K. & Klemm, R. A. Upper critical field in p-wave superconductors with broken symmetry. Phys. Rev. Lett. 54, 2445–2448 (1985).

    Article  ADS  Google Scholar 

  22. Gegenwart, P. et al. Magnetic-field induced quantum critical point in YbRh2Si2 . Phys. Rev. Lett. 89, 056402 (2002).

    Article  ADS  Google Scholar 

  23. Custers, J. et al. The break-up of heavy electrons at a quantum critical point. Nature 424, 524–527 (2003).

    Article  ADS  Google Scholar 

  24. Lonzarich, G. G. in Electron, a Centenary Volume (ed. Springford, M.) 109–147 (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  25. Paulsen, C. et al. Low temperature properties of the heavy-fermion compound CeRu2Si2 at the metamagnetic transition. J. Low Temp. Phys. 81, 317–339 (1990).

    Article  ADS  Google Scholar 

  26. Borzi, R. A. et al. de Haas-van Alphen effect across the metamagnetic transition in Sr3Ru2O7 . Phys. Rev. Lett. 92, 216403 (2004).

    Article  ADS  Google Scholar 

  27. Grigera, S. A. et al. Disorder-sensitive phase formation linked to metamagnetic quantum criticality. Science 306, 1154–1157 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support was provided for work at the GHMFL from the European Commission. A.H. gratefully acknowledges support from the Royal Society, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Huxley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lévy, F., Sheikin, I. & Huxley, A. Acute enhancement of the upper critical field for superconductivity approaching a quantum critical point in URhGe. Nature Phys 3, 460–463 (2007). https://doi.org/10.1038/nphys608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys608

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing