Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooling quasiparticles in A3C60 fullerides by excitonic mid-infrared absorption

Abstract

Long after its discovery, superconductivity in alkali fullerides A3C60 still challenges conventional wisdom. The freshest inroad in such ever-surprising physics is the behaviour under intense infrared excitation. Signatures attributable to a transient superconducting state extending up to temperatures ten times higher than the equilibrium Tc 20 K have been discovered in K3C60 after ultra-short pulsed infrared irradiation—an effect which still appears as remarkable as mysterious. Motivated by the observation that the phenomenon is observed in a broad pumping frequency range that coincides with the mid-infrared electronic absorption peak still of unclear origin, rather than to transverse optical phonons as has been proposed, we advance here a radically new mechanism. First, we argue that this broad absorption peak represents a ‘super-exciton’ involving the promotion of one electron from the t1u half-filled state to a higher-energy empty t1g state, dramatically lowered in energy by the large dipole–dipole interaction acting in conjunction with the Jahn–Teller effect within the enormously degenerate manifold of (t1u)2(t1g)1 states. Both long-lived and entropy-rich because they are triplets, the infrared-induced excitons act as a sort of cooling mechanism that permits transient superconductive signals to persist up to much higher temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental data from ref. 11.
Figure 2: Molecular terms in the presence of Jahn–Teller.
Figure 3: The absorption process.
Figure 4: Effective temperature Teff after the laser pulse.

Similar content being viewed by others

References

  1. Gunnarsson, O. Superconductivity in fullerides. Rev. Mod. Phys. 69, 575–606 (1997).

    Article  ADS  Google Scholar 

  2. Capone, M., Fabrizio, M., Castellani, C. & Tosatti, E. Strongly correlated superconductivity. Science 296, 2364–2366 (2002).

    Article  ADS  Google Scholar 

  3. Capone, M., Fabrizio, M., Castellani, C. & Tosatti, E. Colloquium: Modeling the unconventional superconducting properties of expanded A3C60 fullerides. Rev. Mod. Phys. 81, 943–958 (2009).

    Article  ADS  Google Scholar 

  4. Fabrizio, M. & Tosatti, E. Nonmagnetic molecular Jahn–Teller Mott insulators. Phys. Rev. B 55, 13465–13472 (1997).

    Article  ADS  Google Scholar 

  5. Durand, P., Darling, G. R., Dubitsky, Y., Zaopo, A. & Rosseinsky, M. J. The Mott–Hubbard insulating state and orbital degeneracy in the superconducting C603− fulleride family. Nat. Mater. 2, 605–610 (2003).

    Article  ADS  Google Scholar 

  6. Kitano, H. et al. Evidence for insulating behavior in the electric conduction of (NH3)K3C60 systems. Phys. Rev. Lett. 88, 096401 (2002).

    Article  ADS  Google Scholar 

  7. Klupp, G. et al. Dynamic Jahn–Teller effect in the parent insulating state of the molecular superconductor Cs3C60 . Nat. Commun. 3, 912 (2012).

    Article  ADS  Google Scholar 

  8. Micnas, R., Ranninger, J. & Robaszkiewicz, S. Superconductivity in narrow-band systems with local nonretarded attractive interactions. Rev. Mod. Phys. 62, 113–171 (1990).

    Article  ADS  Google Scholar 

  9. Ganin, A. Y. et al. Bulk superconductivity at 38 K in a molecular system. Nat. Mater. 7, 367–371 (2008).

    Article  ADS  Google Scholar 

  10. Alloul, H. et al. Nmr investigation of the pressure induced Mott transition to superconductivity in Cs3C60 isomeric compounds. J. Phys. 449, 012030 (2013).

    Google Scholar 

  11. Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    Article  ADS  Google Scholar 

  12. Sentef, M. A., Kemper, A. F., Georges, A. & Kollath, C. Theory of light-enhanced phonon-mediated superconductivity. Phys. Rev. B 93, 144506 (2016).

    Article  ADS  Google Scholar 

  13. Knap, M., Babadi, M., Refael, G., Martin, I. & Demler, E. Dynamical Cooper pairing in nonequilibrium electron–phonon systems. Phys. Rev. B 94, 214504 (2016).

    Article  ADS  Google Scholar 

  14. Kim, M. et al. Enhancing superconductivity in A3C60 fullerides. Phys. Rev. B 94, 155152 (2016).

    Article  ADS  Google Scholar 

  15. Kennes, D. M., Wilner, E. Y., Reichman, D. R. & Millis, A. J. Transient superconductivity from electronic squeezing of optically pumped phonons. Nat. Phys. 13, 479–483 (2017).

    Article  Google Scholar 

  16. Mazza, G. & Georges, A. Nonequilibrium superconductivity in driven alkali-doped fullerides. Phys. Rev. B 96, 064515 (2017).

    Article  ADS  Google Scholar 

  17. Martin, M. C., Koller, D. & Mihaly, L. In situ infrared transmission study of Rb- and K-doped fullerenes. Phys. Rev. B 47, 14607–14610 (1993).

    Article  ADS  Google Scholar 

  18. Degiorgi, L. et al. Optical properties of the alkali-metal-doped superconducting fullerenes: K3C60 and Rb3C60 . Phys. Rev. B 49, 7012–7025 (1994).

    Article  ADS  Google Scholar 

  19. Degiorgi, L. Fullerenes and carbon derivatives: from insulators to superconductors. Adv. Phys. 47, 207–316 (1998).

    Article  ADS  Google Scholar 

  20. Gelfand, M. P. & Lu, J. P. Orientational correlations and order in A3C60 . Appl. Phys. A 56, 215–217 (1993).

    Article  ADS  Google Scholar 

  21. Deshpande, M. S., Mele, E. J., Rice, M. J. & Choi, H.-Y. Midinfrared conductivity in orientationally disordered doped fullerides. Phys. Rev. B 50, 6993–7006 (1994).

    Article  ADS  Google Scholar 

  22. van den Brink, J., Gunnarsson, O. & Eyert, V. Optical conductivity in A3C60 (A = K, Rb). Phys. Rev. B 57, 2163–2167 (1998).

    Article  ADS  Google Scholar 

  23. Chibotaru, L. F. & Ceulemans, A. Symmetry breaking and the band structure of fullerides: the concomitant role of Jahn–Teller interactions and electron correlation. in Proc. XIV Int. Symp. on Electron–Phonon Dynamics and Jahn–Teller Effect (eds Bevilacqua, G., Martinelli, L. & Terzi, N.) 233–240 (World Scientific, 1999).

    Google Scholar 

  24. Auerbach, A., Manini, N. & Tosatti, E. Electron–vibron interactions in charged fullerenes. I Berry phases. Phys. Rev. B 49, 12998–13007 (1994).

    Article  ADS  Google Scholar 

  25. Manini, N., Tosatti, E. & Auerbach, A. Electron–vibron interactions in charged fullerenes. II pair energies and spectra. Phys. Rev. B 49, 13008–13016 (1994).

    Article  ADS  Google Scholar 

  26. O’Brien, M. C. M. Vibronic energies in C60N and the Jahn–Teller effect. Phys. Rev. B 53, 3775–3789 (1996).

    Article  ADS  Google Scholar 

  27. Dunn, J. L. & Li, H. Jahn–Teller effects in the fullerene anion C603−. Phys. Rev. B 71, 115411 (2005).

    Article  ADS  Google Scholar 

  28. Wehrli, S. & Sigrist, M. Jahn–Teller effect versus Hund’s rule coupling in C60N. Phys. Rev. B 76, 125419 (2007).

    Article  ADS  Google Scholar 

  29. Naghavi, S. S., Fabrizio, M., Qin, T. & Tosatti, E. Nanoscale orbital excitations and the infrared spectrum of a molecular Mott insulator: A15-Cs3C60 . Nanoscale 8, 17483–17488 (2016).

    Article  Google Scholar 

  30. Nikolaev, A. V. & Michel, K. H. Molecular terms, magnetic moments, and optical transitions of molecular ions C60m±. J. Chem. Phys. 117, 4761–4776 (2002).

    Article  ADS  Google Scholar 

  31. Negri, F., Orlandi, G. & Zerbetto, F. Low-lying electronic excited states of buckminsterfullerene anions. J. Am. Chem. Soc. 114, 2909–2913 (1992).

    Article  Google Scholar 

  32. Rai, R. (T1u + T1g) (h g + τ1u) vibronic interaction and superconductivity in C60n fullerides. Z. Phys. B 99, 327–332 (1996).

    Article  ADS  Google Scholar 

  33. Ceulemans, A. & Chibotaru, L. F. Icosahedral t1u + t1g Jahn–Teller problem. Phys. Rev. B 53, 2460–2462 (1996).

    Article  ADS  Google Scholar 

  34. Iwahara, N., Sato, T., Tanaka, K. & Chibotaru, L. F. Vibronic coupling in C60 anion revisited: derivations from photoelectron spectra and DFT calculations. Phys. Rev. B 82, 245409 (2010).

    Article  ADS  Google Scholar 

  35. Gunnarsson, O. et al. Photoemission spectra of C60: electron–phonon coupling, Jahn–Teller effect, and superconductivity in the fullerides. Phys. Rev. Lett. 74, 1875–1878 (1995).

    Article  ADS  Google Scholar 

  36. Hands, I. D. et al. Vibronic interactions in the visible and near-infrared spectra of C60 anions. Phys. Rev. B 77, 115445 (2008).

    Article  ADS  Google Scholar 

  37. Alqannas, H. S., Lakin, A. J., Farrow, J. A. & Dunn, J. L. Interplay between Coulomb and Jahn–Teller effects in icosahedral systems with triplet electronic states coupled to h-type vibrations. Phys. Rev. B 88, 165430 (2013).

    Article  ADS  Google Scholar 

  38. Green, W. H. et al. Electronic structures and geometries of C60 anions via density functional calculations. J. Phys. Chem. 100, 14892–14898 (1996).

    Article  Google Scholar 

  39. Gunnarsson, O. & Zwicknagl, G. Coulomb pseudopotential, screening and superconductivity in C60 . Phys. Rev. Lett. 69, 957–960 (1992).

    Article  ADS  Google Scholar 

  40. Manini, N. & Tosatti, E. Exact zero-point energy shift in the e(nE), t(nH) many-modes dynamic Jahn–Teller systems at strong coupling. Phys. Rev. B 58, 782–790 (1998).

    Article  ADS  Google Scholar 

  41. Rice, M. J. & Choi, H.-Y. Charged-phonon absorption in doped C60 . Phys. Rev. B 45, 10173–10176 (1992).

    Article  ADS  Google Scholar 

  42. Eliashberg, G. M. Inelastic electron collisions and nonequilibrium stationary states in superconductors. Zh. Eksp. Teor. Fiz. 61, 1254–1272 (1971) Sov. Phys. JETP 34, 668–676 (1972).

    Google Scholar 

  43. Kopnin, N. Theory of Nonequilibrium Superconductivity (Clarendon, 2001).

    Book  Google Scholar 

  44. Cantaluppi, A. et al. Pressure tuning of light-induced superconductivity in K3C60. Preprint at http://arXiv.org/abs/1705.05939 (2017).

  45. Iwahara, N. & Chibotaru, L. F. Dynamical Jahn–Teller effect and antiferromagnetism in Cs3C60 . Phys. Rev. Lett. 111, 056401 (2013).

    Article  ADS  Google Scholar 

  46. Ketterle, W. & N. J., V. D. Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181–236 (1996).

    Article  ADS  Google Scholar 

  47. Bernier, J.-S. et al. Cooling fermionic atoms in optical lattices by shaping the confinement. Phys. Rev. A 79, 061601 (2009).

    Article  ADS  Google Scholar 

  48. Brouet, V., Alloul, H., Garaj, S. & Forró, L. Persistence of molecular excitations in metallic fullerides and their role in a possible metal to insulator transition at high temperatures. Phys. Rev. B 66, 155124 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are very grateful to A. Cavalleri, L. F. Chibotaru, M. Capone and A. Cantaluppi for comments and discussions, and to S.S. Naghavi for his help. We also acknowledge discussions with A. Isidori, M. Kim and G. Mazza. This work was supported by the European Union, under ERC FIRSTORM, contract N. 692670, ERC MODPHYSFRICT, contract N. 320796, and ERC QMAC, contract N. 319286.

Author information

Authors and Affiliations

Authors

Contributions

M.F. coordinated the research activities with inputs from all coauthors. M.F. and A.N. performed the calculations. In particular, A.N. performed the variational calculation for the (t1u + t1g) × Hg Jahn–Teller problem, and the numerical integration of the Boltzmann equations. All authors contributed to the data analysis and to the interpretation of the theoretical results. The text was drafted by M.F. with major inputs from all coauthors.

Corresponding author

Correspondence to Michele Fabrizio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nava, A., Giannetti, C., Georges, A. et al. Cooling quasiparticles in A3C60 fullerides by excitonic mid-infrared absorption. Nat. Phys. 14, 154–159 (2018). https://doi.org/10.1038/nphys4288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4288

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing