Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rotational superradiant scattering in a vortex flow

Abstract

When an incident wave scatters off of an obstacle, it is partially reflected and partially transmitted. In theory, if the obstacle is rotating, waves can be amplified in the process, extracting energy from the scatterer. Here we describe in detail the first laboratory detection of this phenomenon, known as superradiance1,2,3,4. We observed that waves propagating on the surface of water can be amplified after being scattered by a draining vortex. The maximum amplification measured was 14% ± 8%, obtained for 3.70 Hz waves, in a 6.25-cm-deep fluid, consistent with the superradiant scattering caused by rapid rotation. We expect our experimental findings to be relevant to black-hole physics, since shallow water waves scattering on a draining fluid constitute an analogue of a black hole5,6,7,8,9,10, as well as to hydrodynamics, due to the close relation to over-reflection instabilities11,12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wave characteristics of the surface perturbation ξ, filtered at a single frequency, for six different frequencies.
Figure 2: Reflection coefficients for various frequencies and various values of m.
Figure 3: Reflection coefficients for different values of m, for the frequency f = 3.70 Hz (stars).
Figure 4: PIV measurements of the velocity field averaged of 10 experiments.

Similar content being viewed by others

References

  1. Brito, R., Cardoso, V. & Pani, P. Superradiance. Lect. Notes Phys. 906, 1–237 (2015).

    Article  Google Scholar 

  2. Richartz, M., Weinfurtner, S., Penner, A. J. & Unruh, W. G. Generalized superradiant scattering. Phys. Rev. D 80, 124016 (2009).

    Article  ADS  Google Scholar 

  3. Zel’Dovich, Y. B. Generation of waves by a rotating body. JETP Lett. 14, 180–181 (1971).

    ADS  Google Scholar 

  4. Zel’Dovich, Y. B. Amplification of cylindrical electromagnetic waves reflected from a rotating body. Sov. Phys. JETP 35, 1085–1087 (1972).

    ADS  Google Scholar 

  5. Unruh, W. Experimental black hole evaporation. Phys. Rev. Lett. 46, 1351–1353 (1981).

    Article  ADS  Google Scholar 

  6. Visser, M. Acoustic black holes: horizons, ergospheres and Hawking radiation. Class. Quantum Gravity 15, 1767–1791 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  7. Schützhold, R. & Unruh, W. G. Gravity wave analogues of black holes. Phys. Rev. D 66, 044019 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  8. Weinfurtner, S., Tedford, E. W., Penrice, M. C. J., Unruh, W. G. & Lawrence, G. A. Measurement of stimulated hawking emission in an analogue system. Phys. Rev. Lett. 106, 021302 (2011).

    Article  ADS  Google Scholar 

  9. Steinhauer, J. Observation of thermal Hawking radiation and its entanglement in an analogue black hole. Nat. Phys. 12, 959–965 (2016).

    Article  Google Scholar 

  10. Dolan, S. R. & Oliveira, E. S. Scattering by a draining bathtub vortex. Phys. Rev. D 87, 124038 (2013).

    ADS  Google Scholar 

  11. Acheson, D. J. On over-reflexion. J. Fluid Mech. 77, 433–472 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  12. Kelley, D. H., Triana, S. A., Zimmerman, D. S., Tilgner, A. & Lathrop, D. P. Inertial waves driven by differential rotation in a planetary geometry. Geophys. Astrophys. Fluid Dynam. 101, 469–487 (2007).

    Article  ADS  Google Scholar 

  13. Fridman, A. et al. Over-reflection of waves and over-reflection instability of flows revealed in experiments with rotating shallow water. Phys. Lett. A 372, 4822–4826 (2008).

    Article  ADS  Google Scholar 

  14. Newton, R. G. Scattering Theory of Waves and Particles (Courier Dover, 1982).

    Book  Google Scholar 

  15. Richartz, M., Prain, A., Liberati, S. & Weinfurtner, S. Rotating black holes in a draining bathtub: superradiant scattering of gravity waves. Phys. Rev. D 91, 124018 (2015).

    Article  ADS  Google Scholar 

  16. Schaffer, M., Große, M. & Weinfurtner, S. Verfahren zur 3d-vermessung von flüssigkeiten und gelen. (2016); http://google.com/patents/DE102015001365A1?cl=zh DE Patent App. DE201,510,001,365.

  17. Dolan, S. R., Oliveira, E. S. & Crispino, L. C. B. Aharonov–Bohm effect in a draining bathtub vortex. Phys. Lett. B 701, 485–489 (2011).

    Article  ADS  Google Scholar 

  18. Berry, M., Chambers, R., Large, M., Upstill, C. & Walmsley, J. Wavefront dislocations in the Aharonov–Bohm effect and its water wave analogue. Eur. J. Phys. 1, 154–162 (1980).

    Article  MathSciNet  Google Scholar 

  19. Vivanco, F., Melo, F., Coste, C. & Lund, F. Surface wave scattering by a vertical vortex and the symmetry of the Aharonov–Bohm wave function. Phys. Rev. Lett. 83, 1966–1969 (1999).

    Article  ADS  Google Scholar 

  20. Stepanyants, Y. A. & Fabrikant, A. Propagation of Waves in Shear Flows (Phys. Math. Literature Publishing Company, Russian Academy of Sciences, 1996).

    MATH  Google Scholar 

  21. Coutant, A. & Parentani, R. Undulations from amplified low frequency surface waves. Phys. Fluids 26, 044106 (2014).

    Article  ADS  Google Scholar 

  22. Cardoso, V., Coutant, A., Richartz, M. & Weinfurtner, S. Detecting rotational superradiance in fluid laboratories. Phys. Rev. Lett. 117, 271101 (2016).

    Article  ADS  Google Scholar 

  23. Basak, S. & Majumdar, P. ‘Superresonance’ from a rotating acoustic black hole. Class. Quantum Gravity 20, 3907–3914 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  24. Misner, C. Stability of Kerr black holes against scalar perturbations. Bull. Am. Phys. Soc. 17, 472 (1972).

    Google Scholar 

  25. Starobinsky, A. A. Amplification of waves during reflection from a rotating black hole. Sov. Phys. JETP 37, 28–32 (1973).

    ADS  Google Scholar 

  26. Przadka, A., Cabane, B., Pagneux, V., Maurel, A. & Petitjeans, P. Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface? Exp. Fluids 52, 519–527 (2012).

    Article  Google Scholar 

  27. Bühler, O. Waves and Mean Flows (Cambridge Univ. Press, 2014).

    Book  Google Scholar 

  28. Richartz, M., Prain, A., Weinfurtner, S. & Liberati, S. Superradiant scattering of dispersive fields. Class. Quantum Gravity 30, 085009 (2013).

    Article  ADS  Google Scholar 

  29. Coutant, A. & Weinfurtner, S. The imprint of the analogue Hawking effect in subcritical flows. Phys. Rev. D 94, 064026 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  30. Prabhu, K. Window Functions and their Applications in Signal Processing (CRC Press, 2013).

    Book  Google Scholar 

  31. Lautrup, B. Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World (CRC Press, 2011).

    MATH  Google Scholar 

  32. Thielicke, W. The Flapping Flight of Birds PhD. thesis, Univ. Groningen (2014).

  33. Thielicke, W. & Stamhuis, E. PIVlab—towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2, e30 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to the technical and administrative staff in the School of Physics & Astronomy where our experimental setup is hosted. In particular, we want to thank T. Wright and T. Napier for their support, hard work and sharing their technical knowledge and expertise with us to set up the experiment in Nottingham. Furthermore we would like to thank B. Unruh, S. Liberati, J. Niemela, L. Lehner, V. Cardoso, M. Berry, V. Pagneux, D. Faccio, F. Orucevic, J. Schmiedmayer and T. Fernholz for discussions regarding the experiment, and we wish to thank M. Berry, V. Cardoso, D. Faccio, L. Lehner, S. Liberati and B. Unruh for comments on the paper. Although all experiments have been conducted at The University of Nottingham, the initial stages of the experiment took place at ICTP / SISSA in Trieste (Italy) and would not have been possible without the support by J. Niemela, S. Liberati and G. Martinelli. S.W. would like to thank M. Penrice, A. Prain, M. Danailov, I. Cudin, H. Tanner, Z. Fifer, A. Finke and D. Russon for their contributions at different stages of the experiment. S.W. would also like to thank T. Sotiriou for the many discussions on all aspects of the project. A.C. acknowledges funding received from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement no. 655524. M.R. acknowledges financial support from the São Paulo Research Foundation (FAPESP), Grants No. 2005/04219-0, No. 2010/20123-1, No. 2013/09357-9, No. 2013/15748-0 and No. 2015/14077-0. M.R. and T. Ted are also grateful to S.W. and the University of Nottingham for hospitality while this work was being completed. S.W. acknowledges financial support provided under the Royal Society University Research Fellow (UF120112), the Nottingham Advanced Research Fellow (A2RHS2), the Royal Society Project (RG130377) grants and the EPSRC Project Grant (EP/P00637X/1). The initial stages of the experiment were funded by S.W.’s Research Awards for Young Scientists (in 2011 and 2012) and by the Marie Curie Career Integration Grant (MULTI-QG-2011).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the work.

Corresponding author

Correspondence to Silke Weinfurtner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, T., Patrick, S., Coutant, A. et al. Rotational superradiant scattering in a vortex flow. Nature Phys 13, 833–836 (2017). https://doi.org/10.1038/nphys4151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4151

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing