Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superfluid Brillouin optomechanics

Abstract

Optomechanical systems couple an electromagnetic cavity to a mechanical resonator which typically is a solid object. The range of phenomena accessible in these systems depends on the properties of the mechanical resonator and on the manner in which it couples to the cavity fields. In both respects, a mechanical resonator formed from superfluid liquid helium offers several appealing features: low electromagnetic absorption, high thermal conductivity, vanishing viscosity, well-understood mechanical loss, and in situ alignment with cryogenic cavities. In addition, it offers degrees of freedom that differ qualitatively from those of a solid. Here, we describe an optomechanical system consisting of a miniature optical cavity filled with superfluid helium. The cavity mirrors define optical and mechanical modes with near-perfect overlap, resulting in an optomechanical coupling rate 3 kHz. This coupling is used to drive the superfluid and is also used to observe the thermal motion of the superfluid, resolving a mean phonon number as low as eleven.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Description and characterization of the superfluid-filled optical cavity.
Figure 2: Characterizing the acoustic mode and the optomechanical coupling.
Figure 3: Acoustic damping as a function of temperature.
Figure 4: Thermal fluctuations of the acoustic mode.

Similar content being viewed by others

References

  1. Aspelmeyer, M., Marquardt, F. & Kippenberg, T. J. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS  Google Scholar 

  2. O’Connell et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article  ADS  Google Scholar 

  3. Jasper, C. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 98–92 (2011).

    ADS  Google Scholar 

  4. Brahms, N., Botter, T., Schreppler, A., Brooks, D. W. C. & Stamper-Kurn, D. M. Optically detecting the quantization of collective atomic motion. Phys. Rev. Lett. 108, 133601 (2012).

    Article  ADS  Google Scholar 

  5. Safavi-Naeini, A. H. et al. Squeezed light from a silicon micromechanical resonator. Nature 500, 185–189 (2013).

    Article  ADS  Google Scholar 

  6. Palomaki, T. A., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Entangling mechanical motion with microwave fields. Science 342, 710–713 (2013).

    Article  ADS  Google Scholar 

  7. Purdy, T. P., Peterson, R. W. & Regal, C. A. Observation of radiation pressure shot noise on a macroscopic object. Science 339, 801–804 (2013).

    Article  ADS  Google Scholar 

  8. Meenehan, S. M. et al. Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground-state of motion. Phys. Rev. X 5, 041002 (2015).

    Google Scholar 

  9. Wollmann, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  10. Pirkkalainen, J.-M., Damskägg, E., Brandt, M., Massel, F. & Sillanpää, M. A. Squeezing of quantum noise of motion in a micromechanical resonator. Phys. Rev. Lett. 115, 243601 (2015).

    Article  ADS  Google Scholar 

  11. Purdy, T. P. et al. Optomechanical Raman-ratio thermometry. Phys. Rev. A 92, 031802(R) (2015).

    Article  ADS  Google Scholar 

  12. Underwood, M. et al. Measurement of the motional sidebands of a nanogram-scale oscillator in the quantum regime. Phys. Rev. A 92, 061801(R) (2015).

    Article  ADS  Google Scholar 

  13. Reidinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313–316 (2016).

    Article  ADS  Google Scholar 

  14. Ma, Y. et al. Narrowing the filter-cavity bandwidth in gravitational-wave detectors via optomechanical interaction. Phys. Rev. Lett. 113, 151102 (2014).

    Article  ADS  Google Scholar 

  15. Safavi-Naeini, A. H. & Painter, O. J. Proposal for an optomechanical traveling wave phonon–photon translator. New J. Phys. 13, 013017 (2011).

    Article  ADS  Google Scholar 

  16. Regal, C. A. & Lehnert, K. W. From cavity electromechanics to cavity optomechanics. J. Phys. Conf. Ser. 264, 012025 (2011).

    Article  Google Scholar 

  17. Romero-Isart, O. Quantum superposition of massive objects and collapse models. Phys. Rev. A 84, 052121 (2011).

    Article  ADS  Google Scholar 

  18. Yang, H. et al. Macroscopic quantum mechanics in a classical spacetime. Phys. Rev. Lett. 110, 170401 (2013).

    Article  ADS  Google Scholar 

  19. Hammerer, K. et al. Strong coupling of a mechanical oscillator and a single atom. Phys. Rev. Lett. 103, 063005 (2009).

    Article  ADS  Google Scholar 

  20. Hammerer, K., Aspelmeyer, M., Polzik, E. S. & Zoller, P. Establishing Einstein–Podolsky–Rosen channels between nanomechanics and atomic ensembles. Phys. Rev. Lett. 102, 020501 (2009).

    Article  ADS  Google Scholar 

  21. Rabl, P. et al. A quantum spin transducer based on nanoelectromechanical resonator arrays. Nat. Phys. 6, 602–608 (2010).

    Article  Google Scholar 

  22. Gupta, S., Moore, K. L., Murch, K. W. & Stamper-Kurn, D. M. Cavity nonlinear optics at low photon numbers from collective atomic motion. Phys. Rev. Lett. 99, 213601 (2007).

    Article  ADS  Google Scholar 

  23. Brennecke, F., Ritter, S., Donner, T. & Esslinger, T. Cavity optomechanics with a Bose–Einstein condensate. Science 322, 235–238 (2008).

    Article  ADS  Google Scholar 

  24. Colgate, S. O., Sivaraman, A., Dejsupa, C. & McGill, K. C. Acoustic cavity method for phase boundary determinations: the critical temperature of CO2 . Rev. Sci. Instr. 62, 198–202 (1991).

    Article  ADS  Google Scholar 

  25. Tzeng, H. M., Long, M. B., Chang, R. K. & Barber, P. W. Laser-induced shape distortions of flowing droplets deduced from morphology-dependent resonances in fluorescent spectra. Opt. Lett. 10, 209–211 (1985).

    Article  ADS  Google Scholar 

  26. Dahan, R., Martin, L. L. & Carmon, T. Droplet optomechanics. Optica 3, 175–178 (2016).

    Article  ADS  Google Scholar 

  27. Bahl, G. et al. Brillouin cavity optomechanics with microfluidic devices. Nat. Commun. 4, 1994 (2013).

    Article  ADS  Google Scholar 

  28. Maris, H. J. Phonon–phonon interactions in liquid helium. Rev. Mod. Phys. 49, 341–359 (1977).

    Article  ADS  Google Scholar 

  29. Donnelly, R. J. & Barenghi, C. F. The observed properties of liquid helium at the saturated vapor pressure. J. Phys. Chem. Ref. Data 27, 1217–1274 (1998).

    Article  ADS  Google Scholar 

  30. Greytak, T. J. & Yan, J. Light scattering from rotons in liquid helium. Phys. Rev. Lett. 22, 987–990 (1969).

    Article  ADS  Google Scholar 

  31. Greytak, T. J., Woerner, R., Yan, J. & Benjamin, R. Experimental evidence for a two-proton bound state in superfluid helium. Phys. Rev. Lett. 25, 1547–1550 (1970).

    Article  ADS  Google Scholar 

  32. Palin, C. J., Vinen, W. F., Pike, E. R. & Vaughan, J. M. Rayleigh and Brillouin scattering from superfluid 3He-4He mixtures. J. Phys. C 4, L225–L228 (1971).

    Article  ADS  Google Scholar 

  33. Wagner, F. Scattering of light by thermal ripplons on superfluid helium. J. Low Temp. Phys. 13, 317–330 (1973).

    Article  ADS  Google Scholar 

  34. Rockwell, D. A., Benjamin, R. F. & Greytak, T. J. Brillouin scattering from superfluid 3He-4He solutions. J. Low Temp. Phys. 18, 389–425 (1975).

    Article  ADS  Google Scholar 

  35. Harris, G. I. et al. Laser cooling and control of excitations in superfluid helium. Nat. Phys. 12, 788–793 (2016).

    Article  Google Scholar 

  36. DeLorenzo, L. A. & Schwab, K. C. Superfluid optomechanics: coupling of a superfluid to a superconducting condensate. New J. Phys. 16, 113020 (2014).

    Article  Google Scholar 

  37. Hunger, D., Deutsch, C., Barbour, R. J., Warburton, R. J. & Reichel, J. Laser fabrication of concave, low-roughness features in silica. AIP Adv. 2, 012119 (2012).

    Article  ADS  Google Scholar 

  38. Rempe, G., Thompson, R. J., Kimble, H. J. & Lalezari, R. Measurement of ultralow losses in an optical interferometer. Opt. Lett. 17, 363–365 (1992).

    Article  ADS  Google Scholar 

  39. Flowers-Jacobs, N. E. et al. Fiber-cavity-based optomechanical device. Appl. Phys. Lett. 101, 221109 (2012).

    Article  ADS  Google Scholar 

  40. Damzen, M. J., Vlad, V. I., Babin, V. & Mocofanescu, A. Stimulated Brillouin Scattering (Taylor & Francis, 2003).

    Book  Google Scholar 

  41. Van Laer, R., Baets, R. & Van Thourhout, D. Unifying Brillouin scattering and cavity optoechanics. Phys. Rev. A 93, 053828 (2016).

    Article  ADS  Google Scholar 

  42. Bohr, A. & Mottelson, B. R. Nuclear Structure (World Scientific, 1997).

    MATH  Google Scholar 

  43. Siegman, A. E. Lasers (University Science Books, 1986).

    Google Scholar 

  44. Agarwal, G. S. & Jha, S. S. Theory of optomechanical interactions in superfluid He. Phys. Rev. A 90, 023812 (2014).

    Article  ADS  Google Scholar 

  45. Seidel, G. M., Lanou, R. E. & Yao, W. Rayleigh scattering in rare-gas liquids. Nuc. Instr. Meth. Phys. Res. A 489, 189–194 (2002).

    Article  ADS  Google Scholar 

  46. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

    Article  ADS  Google Scholar 

  47. Purdy, T. P., Grutter, K. E., Srinivasan, K. & Taylor, J. M. Observation of optomechanical quantum correlations at room temperature. Preprint at http://arXiv.org/abs/1605.05664 (2016).

  48. Vinen, W. F., Tsubota, M. & Mitani, A. Kelvin-wave cascade on a vortex in superfluid 4He at a very low temperature. Phys. Rev. Lett. 91, 135301 (2003).

    Article  ADS  Google Scholar 

  49. Kozik, E. & Svistunov, B. Kelvin-wave cascade and decay of superfluid turbulence. Phys. Rev. Lett. 92, 035301 (2004).

    Article  ADS  Google Scholar 

  50. Platzman, P. M. & Dykman, M. I. Quantum computing with electrons floating on liquid helium. Science 284, 1967–1969 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to V. Bernardo, J. Chadwick, J. Cummings, A. Fragner, K. Lawrence, D. Lee, D. McKinsey, P. Rakich, R. Schoelkopf, H. Tang, J. Thompson and Z. Zhao for their assistance. We acknowledge financial support from W. M. Keck Foundation Grant No. DT121914, AFOSR Grants FA9550-09-1-0484 and FA9550-15-1-0270, DARPA Grant W911NF-14-1-0354, ARO Grant W911NF-13-1-0104, and NSF Grant 1205861. This work has been supported by the DARPA/MTO ORCHID Program through a grant from AFOSR. This project was made possible through the support of a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1122492. L.H., K.O. and J.R. acknowledge funding from the EU Information and Communication Technologies Program (QIBEC project, GA 284584), ERC (EQUEMI project, GA 671133), and IFRAF.

Author information

Authors and Affiliations

Authors

Contributions

A.D.K., A.B.S. and C.D.B. performed the measurements and analysis; A.D.K., A.B.S. and N.E.F.-J. assembled the device; A.D.K. and L.C. built and tested prototypes of the device; S.W.H., L.H. and K.O. carried out the laser machining of the fibres; J.R. supervised the laser machining; J.G.E.H. supervised the other phases of the project.

Corresponding author

Correspondence to J. G. E. Harris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 743 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashkanova, A., Shkarin, A., Brown, C. et al. Superfluid Brillouin optomechanics. Nature Phys 13, 74–79 (2017). https://doi.org/10.1038/nphys3900

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3900

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing