Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Beyond Boltzmann–Gibbs statistical mechanics in optical lattices

Abstract

Cold atoms in dissipative optical lattices exhibit an unusual transport behaviour that cannot be described within Boltzmann–Gibbs statistical mechanics. New theoretical tools and concepts need thus be developed to account for their observable macroscopic properties. Here we review recent progress achieved in the study of these processes. We emphasize the generality of the findings for a broad class of physical, chemical and biological systems, and discuss open questions and perspectives for future work.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial diffusion exponent.
Figure 2: Power-law momentum distribution.
Figure 3: Self-similar position distribution.

Similar content being viewed by others

References

  1. Dorfman, J. R. An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  2. Lebowitz, J. L. & Penrose, O. Modern ergodic theory. Phys. Today 26, 23–30 (February, 1973).

    Article  Google Scholar 

  3. Bouchaud, J. P. & Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  4. Shlesinger, M. F., Zaslavsky, G. M. & Klafter, J. Strange kinetics. Nature 363, 31–37 (1993).

    Article  ADS  Google Scholar 

  5. Bardou, F., Bouchaud, J. P., Emile, O., Aspect, O. & Cohen-Tannoudji, C. Subrecoil laser cooling and Lévy flights. Phys. Rev. Lett. 72, 203–206 (1994).

    Article  ADS  Google Scholar 

  6. Stefani, F. D., Hoogenboom, J. P. & Barkai, E. Beyond quantum jumps: Blinking nanoscale light emitters. Phys. Today 62, 34–39 (February, 2009).

    Article  Google Scholar 

  7. Klafter, J., Shlesinger, M. F. & Zumofen, G. Beyond Brownian motion. Phys. Today 10, 33–39 (February, 1997).

    Google Scholar 

  8. Metzler, R. & Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  9. Sokolov, I. M., Klafter, J. & Blumen, A. Fractional kinetics. Phys. Today 55, 48–54 (November 2002).

    Article  Google Scholar 

  10. Barkai, E., Garini, Y. & Metzler, R. Strange kinetics of single molecules in living cells. Phys. Today 65, 29–35 (August, 2012).

    Article  Google Scholar 

  11. Grynberg, G. & Mennerat-Robilliard, C. Cold atoms in dissipative optical lattices. Phys. Rep. 355, 335–451 (2001).

    Article  ADS  Google Scholar 

  12. Gardiner, C. W. & Zoller, P. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer, 2004).

    MATH  Google Scholar 

  13. Castin, Y., Dalibard, J. & Cohen-Tannoudji, C. in Light Induced Kinetic Effects on Atoms, Ions and Molecules (eds Moi, L. et al.) 5–24 (ETS Editrice, 1991).

    Google Scholar 

  14. Marksteiner, S., Ellinger, K. & Zoller, P. Anomalous diffusion and Lévy walks in optical lattices. Phys. Rev. A 53, 3409–3430 (1996).

    Article  ADS  Google Scholar 

  15. Kondrashin, M. P. & Yakovlev, V. P. Bipotential Motion and Anomalous Transport in Optical Lattices. Laser Phys. 11, 486–492 (2001).

    Google Scholar 

  16. Lutz, E. Anomalous diffusion and Tsallis statistics in an optical lattice. Phys. Rev. A 67, 051402R (2003).

    Article  ADS  Google Scholar 

  17. Breuer, H. P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2007).

    Book  Google Scholar 

  18. Hodapp, T. W., Gerz, C., Furtlehner, C., Westbrook, C. I., Phillips, W. D. & Dalibard, J. Three-dimensional spatial diffusion in optical molasses. Appl. Phys. B 60, 135–143 (1995).

    Article  ADS  Google Scholar 

  19. Katori, H., Schlipf, S. & Walther, H. Anomalous dynamics of a single ion in an optical lattice. Phys. Rev. Lett. 79, 2221–2224 (1997).

    Article  ADS  Google Scholar 

  20. Schlipf, S., Katori, H., Perotti, L. & Walther, H. Diffusion of a single ion in a one-dimensional optical lattice. Opt. Express 3, 97–103 (1998).

    Article  ADS  Google Scholar 

  21. Perotti, L., Alekeseev, V. & Walther, H. Transport of a single ion in an optical lattice: Spatial diffusion and energy. Opt. Commun. 183, 73–94 (2000).

    Article  ADS  Google Scholar 

  22. Wickenbrock, A., Holz, P. C., Abdul Wahab, N. A., Phoonthong, P., Cubero, D. & Renzoni, F. Vibrational mechanics in an optical lattice: Controlling transport via potential renormalization. Phys. Rev. Lett. 108, 020603 (2012).

    Article  ADS  Google Scholar 

  23. Douglas, P., Bergamini, S. & Renzoni, F. Tunable Tsallis distributions in dissipative optical lattices. Phys. Rev. Lett. 96, 110601 (2006).

    Article  ADS  Google Scholar 

  24. Metcalf, H. J. & van der Straten, P. Laser Cooling and Trapping (Springer, 1999).

    Book  Google Scholar 

  25. Sagi, Y., Brook, M., Almog, I. & Davidson, N. Observation of anomalous diffusion and fractional self-similarity in one dimension. Phys. Rev. Lett. 108, 093002 (2012).

    Article  ADS  Google Scholar 

  26. Kessler, D. A. & Barkai, E. Theory of fractional Lévy kinetics for cold atoms diffusing in optical lattices. Phys. Rev. Lett. 108, 230602 (2012).

    Article  ADS  Google Scholar 

  27. Lévy, P. Théorie de l’Addition des Variables Aléatoires (Gauthier-Villars, 1953).

    MATH  Google Scholar 

  28. Dechant, A. & Lutz, E. Anomalous spatial diffusion and multifractality in optical lattices. Phys. Rev. Lett. 108, 230601 (2012).

    Article  ADS  Google Scholar 

  29. Stanley, H. E. & Meakin, P. Multifractal phenomena in physics and chemistry. Nature 335, 405–409 (1988).

    Article  ADS  Google Scholar 

  30. Lutz, E. Power-law tail distributions and nonergodicity. Phys. Rev. Lett. 93, 190602 (2004).

    Article  ADS  Google Scholar 

  31. Dechant, A., Lutz, A., Kessler, D. A. & Barkai, E. Super-aging correlation function and ergodicity breaking in logarithmic potentials. Phys. Rev. E 84, 051124 (2012).

    Article  ADS  Google Scholar 

  32. Dechant, A., Lutz, A., Kessler, D. A. & Barkai, E. Fluctuations of time averages for Langevin dynamics in a binding force field. Phys. Rev. Lett. 107, 240603 (2011).

    Article  ADS  Google Scholar 

  33. Aaronson, J. An Introduction to Infinite Ergodic Theory (American Mathematical Society, 1997).

    Book  Google Scholar 

  34. Korabel, N. & Barkai, E. Infinite invariant density determines statistics of time averages for weak chaos. Phys. Rev. Lett. 108, 060604 (2012).

    Article  ADS  Google Scholar 

  35. Akimoto, T. Distributional response to biases in deterministic superdiffusion. Phys. Rev. Lett. 108, 164101 (2012).

    Article  ADS  Google Scholar 

  36. Kessler, D. A. & Barkai, E. Infinite covariant density for diffusion in logarithmic potentials and optical lattices. Phys. Rev. Lett. 105, 120602 (2010).

    Article  ADS  Google Scholar 

  37. Dechant, A., Lutz, A., Kessler, D. A. & Barkai, E. Solution of the Fokker–Planck equation with a logarithmic potential. J. Stat. Phys. 145, 1524–1545 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  38. Dechant, A., Lutz, A., Kessler, D. A. & Barkai, E. Superaging correlation function and ergodicity breaking for Brownian motion in logarithmic potentials. Phys. Rev. E 85, 051124 (2012).

    Article  ADS  Google Scholar 

  39. Manning, G. S. Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 51, 924–933 (1969).

    Article  ADS  Google Scholar 

  40. Bouchet, F. & Dauxois, T. Prediction of anomalous diffusion and algebraic relaxations for long-range interacting systems, using classical statistical mechanics. Phys. Rev. E 72, 045103(R) (2005).

    Article  ADS  Google Scholar 

  41. Chavanis, P.H. & Lemou, M. Kinetic theory of point vortices in two dimensions: Analytical results and numerical simulations. Eur. Phys. J. B 59, 217–247 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  42. Sire, C. & Chavanis, P. H. Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions. Phys. Rev. E 66, 046133 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  43. Chavanis, P. H. Exact diffusion coefficient of self-gravitating Brownian particles in two dimensions. Eur. Phys. J. B 57, 391–409 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  44. Fogedby, H. C. & Metzler, R. DNA bubble dynamics as a quantum Coulomb problem. Phys. Rev. Lett. 98, 070601 (2007).

    Article  ADS  Google Scholar 

  45. Bar, A., Kafri, Y. & Mukamel, D. Loop dynamics in DNA denaturation. Phys. Rev. Lett. 98, 038103 (2007).

    Article  ADS  Google Scholar 

  46. Levine, E., Mukamel, D. & Schütz, G.M. Long-range attraction between probe particles mediated by a driven fluid. Europhys. Lett. 70, 565–571 (2005).

    Article  ADS  Google Scholar 

  47. Dalibard, J. & Cohen-Tannoudji, C. Laser cooling below the Doppler limit by polarization gradients: Simple theoretical models. J. Opt. Soc. Am. B 6, 2023–2045 (1989).

    Article  ADS  Google Scholar 

  48. Cohen-Tannoudji, C. & Phillips, W. D. New mechanisms for laser cooling. Phys. Today 43, 33–40 (October, 1990).

    Article  Google Scholar 

  49. Cohen-Tannoudji, C. Manipulating atoms with photons. Rev. Mod. Phys. 70, 707–719 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the DFG (Contract No 1382/4-1) and the Leverhulme Trust for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferruccio Renzoni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutz, E., Renzoni, F. Beyond Boltzmann–Gibbs statistical mechanics in optical lattices. Nature Phys 9, 615–619 (2013). https://doi.org/10.1038/nphys2751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing