Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Distribution of entropy production in a single-electron box

Abstract

Recently, the fundamental laws of thermodynamics have been reconsidered for small systems. The discovery of the fluctuation relations1,2,3,4,5 has spurred theoretical6,7,8,9,10,11,12,13 and experimental14,15,16,17,18,19,20,21,22,23,24,25 studies. The concept of entropy production has been extended to the microscopic level by considering stochastic trajectories of a system coupled to a heat bath. However, this has not been studied experimentally if there are multiple thermal baths present. Here, we measure, with high precision, the distributions of microscopic entropy production in a single-electron box consisting of two islands with a tunnel junction. The islands are coupled to separate heat baths at different temperatures, maintaining a steady thermal non-equilibrium. We demonstrate that stochastic entropy production8,10,11,12,17,20,25,26 from trajectories of electronic transitions is related to thermodynamic entropy production from dissipated heat in the respective thermal baths. We verify experimentally that the fluctuation relations for both definitions are satisfied. Our results reveal the subtlety of irreversible entropy production in non-equilibrium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement set-up.
Figure 2: Evaluation of entropy production.
Figure 3: Distributions of entropy production at different temperatures.
Figure 4: Distributions of entropy production at different frequencies.
Figure 5: Test of the DFR.

Similar content being viewed by others

References

  1. Evans, D. J., Cohen, E. G. D. & Morriss, G. P. Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 (1993).

    Article  ADS  Google Scholar 

  2. Gallavotti, G. & Cohen, E. G. D. Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995).

    Article  ADS  Google Scholar 

  3. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997).

    Article  ADS  Google Scholar 

  4. Kurchan, J. Fluctuation theorem for stochastic dynamics. J. Phys. A. 31, 3719–3729 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  5. Crooks, G. E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999).

    Article  ADS  Google Scholar 

  6. Jarzynski, C. Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 98, 77–102 (2000).

    Article  MathSciNet  Google Scholar 

  7. Hatano, T. & Sasa, S. I. Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463–3466 (2001).

    Article  ADS  Google Scholar 

  8. Seifert, U. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005).

    Article  ADS  Google Scholar 

  9. Sagawa, T. & Ueda, M. Generalized Jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett. 104, 090602 (2010).

    Article  ADS  Google Scholar 

  10. Kawai, R., Parrondo, J. M. R. & Van den Broeck, C. Dissipation: The phase-space perspective. Phys. Rev. Lett. 98, 080602 (2007).

    Article  ADS  Google Scholar 

  11. Gomez-Marin, A., Parrondo, J. M. R. & Van den Broeck, C. Lower bounds on dissipation upon coarse graining. Phys. Rev. E 78, 011107 (2008).

    Article  ADS  Google Scholar 

  12. Esposito, M. Stochastic thermodynamics under coarse graining. Phys. Rev. E 85, 041125 (2012).

    Article  ADS  Google Scholar 

  13. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).

    Article  ADS  Google Scholar 

  14. Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J. & Evans, D. J. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89, 050601 (2002).

    Article  ADS  Google Scholar 

  15. Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. Jr. & Bustamante, C. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002).

    Article  ADS  Google Scholar 

  16. Trepagnier, E. H. et al. Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality. Proc. Natl Acad. Sci. USA 101, 15038–15041 (2004).

    Article  ADS  Google Scholar 

  17. Schuler, S., Speck, T., Tietz, C., Wrachtrup, J. & Seifert, U. Experimental test of the fluctuation theorem for a driven two-level system with time-dependent rates. Phys. Rev. Lett. 94, 180602 (2005).

    Article  ADS  Google Scholar 

  18. Collin, D. et al. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005).

    Article  ADS  Google Scholar 

  19. Blickle, V., Speck, T., Helden, L., Seifert, U. & Bechinger, C. Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential. Phys. Rev. Lett. 96, 070603 (2006).

    Article  ADS  Google Scholar 

  20. Tietz, C., Schuler, S., Speck, T., Seifert, U. & Wrachtrup, J. Measurement of stochastic entropy production. Phys. Rev. Lett. 97, 050602 (2006).

    Article  ADS  Google Scholar 

  21. Speck, T., Blickle, V., Bechinge, C. & Seifert, U. Distribution of entropy production for a colloidal particle in a nonequilibrium steady state. Europhys. Lett. 79, 30002 (2007).

    Article  ADS  Google Scholar 

  22. Nakamura, S. et al. Nonequilibrium fluctuation relations in a quantum coherent conductor. Phys. Rev. Lett. 104, 080602 (2010).

    Article  ADS  Google Scholar 

  23. Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E. & Sano, M. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nature Phys. 6, 988–992 (2010).

    Article  ADS  Google Scholar 

  24. Saira, O-P. et al. Test of the Jarzynski and Crooks fluctuation relations in an electronic system. Phys. Rev. Lett. 109, 180601 (2012).

    Article  ADS  Google Scholar 

  25. Mehl, J. et al. Role of hidden slow degrees of freedom in the fluctuation theorem. Phys. Rev. Lett. 108, 220601 (2012).

    Article  ADS  Google Scholar 

  26. Kawaguchi, K. & Nakayama, Y. Fluctuation theorem for hidden entropy production. Preprint at http://arxiv.org/abs/1209.6333 (2012).

  27. Averin, D. V. & Pekola, J. P. Statistics of the dissipated energy in driven single-electron transitions. Europhys. Lett. 96, 67004 (2011).

    Article  ADS  Google Scholar 

  28. Pekola, J. P., Kutvonen, A. & Ala-Nissila, T. Dissipated work and fluctuation relations for non-equilibrium single-electron transitions. J. Stat. Mech. P02033 (2013).

  29. Averin, D. V. & Likharev, K. K. Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel-junctions. J. Low Temp. Phys. 62, 345–373 (1986).

    Article  ADS  Google Scholar 

  30. Pekola, J. P. & Saira, O-P. Work, free energy and dissipation in voltage driven single-electron transitions. J. Low Temp. Phys. 169, 70–76 (2012).

    Article  ADS  Google Scholar 

  31. Maisi, V. F. et al. Single quasiparticle excitation dynamics on a superconducting island. Preprint at http://arxiv.org/abs/1212.2755 (2013).

Download references

Acknowledgements

This work has been supported in part by the Academy of Finland though its LTQ (project no. 250280) and COMP (project no. 251748) CoE grants, the European Union Seventh Framework Programme INFERNOS (FP7/2007–2013) under grant agreement no. 308850, the Research Foundation of Helsinki University of Technology, and the Väisälä Foundation. We acknowledge Micronova Nanofabrication Centre of Aalto University for providing the processing facilities and technical support. We thank D. Averin, S. Gasparinetti, F. Hekking, K. Likharev, V. Maisi and M. Meschke for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.V.K., O-P.S., Y.Y. and J.P.P. conceived and designed the experiments; J.V.K., O-P.S. and Y.Y. performed the experiments; J.V.K. and M.M. analysed the data. All authors contributed with materials/analysis tools; J.V.K., T.S., M.M., T.A-N. and J.P.P. wrote the paper.

Corresponding author

Correspondence to J. V. Koski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koski, J., Sagawa, T., Saira, OP. et al. Distribution of entropy production in a single-electron box. Nature Phys 9, 644–648 (2013). https://doi.org/10.1038/nphys2711

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing