Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Imaging Cooper pairing of heavy fermions in CeCoIn5

Abstract

The Cooper pairing mechanism of heavy fermionsuperconductors1,2,3,4, long thought to be due to spin fluctuations5,6,7, has not yet been determined. It is the momentum space (k-space) structure of the superconducting energy gap Δ(k) that encodes specifics of this pairing mechanism. However, because the energy scales are so low, it has not been possible to directly measure Δ(k) for any heavy fermion superconductor. Bogoliubov quasiparticle interference imaging8, a proven technique for measuring the energy gaps of superconductors with high critical temperatures9,10,11, has recently been proposed12 as a new method to measure Δ(k) in heavy fermion superconductors, specifically CeCoIn5 (ref. 13). By implementing this method, we detect a superconducting energy gap whose nodes are oriented along k(±1,±1)π/a0 directions14,15,16,17. Moreover, for the first time in any heavy fermion superconductor, we determine the detailed structure of its multiband energy gaps Δi(k). For CeCoIn5, this information includes: the complex band structure and Fermi surface of the hybridized heavy bands, the fact that largest magnitude Δ(k) opens on a high- k band so that the primary gap nodes occur at unforeseen k-space locations, and that the Bogoliubov quasiparticle interference patterns are most consistent with d x 2 y 2 gap symmetry. Such quantitative knowledge of both the heavy band-structure and superconducting gap-structure will be critical in identifying the microscopic pairing mechanism of heavy fermion superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anticipated electronic structure of a heavy fermion superconductor.
Figure 2: Imaging superconducting gap map and vortex lattice of CeCoIn5.
Figure 3: Determination of heavy fermion bands and Fermi surfaces at B = 0 in CeCoIn5.
Figure 4: Momentum-space superconducting energy gap Δ(k) of CeCoIn5.

Similar content being viewed by others

References

  1. Monthoux, P., Pines, D. & Lonzarich, G. G. Superconductivity without phonons. Nature 450, 1177–1183 (2007).

    Article  ADS  Google Scholar 

  2. Norman, M. R. The challenge of unconventional superconductivity. Science 332, 196–200 (2011).

    Article  ADS  Google Scholar 

  3. Scalapino, D. J. A common thread: The pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    Article  ADS  Google Scholar 

  4. Coleman, P. in Handbook of Magnetism and Advanced Magnetic Material, Volume Fundamental Theory (eds Kronmüller, H & Parkin, S) 95–148 (Wiley, 2007).

    Google Scholar 

  5. Miyake, K., Schmitt-Rink, S. & Varma, C. M. Spin-fluctuation-mediated even-parity pairing in heavy-fermion superconductors. Phys. Rev. B 34, 6554–6556 (1986).

    Article  ADS  Google Scholar 

  6. Scalapino, D. J., Loh, E. Jr & Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986).

    Article  ADS  Google Scholar 

  7. Beal-Monod, M. T., Bourbonnais, C. & Emery, V. J. Possible superconductivity in nearly antiferromagnetic itinerant fermion systems. Phys. Rev. B 34, 7716–7720 (1986).

    Article  ADS  Google Scholar 

  8. Wang, Q. H. & Lee, D. H. Quasiparticle scattering interference in high-temperature superconductors. Phys. Rev. B 67, 020511 (2003).

    Article  ADS  Google Scholar 

  9. Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+d . Science 297, 1148–1151 (2002).

    Article  ADS  Google Scholar 

  10. Hanaguri, T. et al. Quasi-particle interference and superconducting gap in Ca2−xNaxCuO2Cl2 . Nature Phys. 3, 865–871 (2007).

    Article  ADS  Google Scholar 

  11. Allan, M. P. et al. Anisotropic energy-gaps of iron-based superconductivity from intra-band quasiparticle interference in LiFeAs. Science 336, 563–567 (2012).

    Article  ADS  Google Scholar 

  12. Akbari, A., Thalmeier, P. & Eremin, I. Quasiparticle interference in the heavy-fermion superconductor CeCoIn5 . Phys. Rev. B 84, 134505 (2011).

    Article  ADS  Google Scholar 

  13. Petrovic, C. et al. Heavy-fermion superconductivity in CeCoIn5 at 2.3 K. J. Phys. Condens. Matter 13, L337–L342 (2001).

    Article  Google Scholar 

  14. Movshovich, R. et al. Unconventional superconductivity in CeIrIn5 and CeCoIn5: Specific heat and thermal conductivity studies. Phys. Rev. Lett. 86, 5152–5155 (2001).

    Article  ADS  Google Scholar 

  15. Izawa, K. et al. Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5 . Phys. Rev. Lett. 87, 057022 (2001).

    Article  ADS  Google Scholar 

  16. Stock, C. et al. Spin resonance in the d-wave superconductor CeCoIn5 . Phys. Rev. Lett. 100, 087001 (2008).

    Article  ADS  Google Scholar 

  17. An, K. et al. Sign reversal of field-angle resolved heat capacity oscillations in a heavy-fermion superconductor CeCoIn5 and d x 2 − y 2 pairing symmetry. Phys. Rev. Lett. 104, 037002 (2010).

    Article  ADS  Google Scholar 

  18. Kenzelmann, M. et al. Coupled superconducting and magnetic order in CeCoIn5 . Science 321, 1652–1654 (2008).

    Article  ADS  Google Scholar 

  19. Hu, T. et al. Strong magnetic fluctuations in a superconducting state of CeCoIn5 . Phys. Rev. Lett. 108, 056401 (2012).

    Article  ADS  Google Scholar 

  20. Schmidt, A. et al. Imaging the Fano lattice to hidden order transition in URu2Si2 . Nature 465, 570–576 (2010).

    Article  ADS  Google Scholar 

  21. Yuan, T., Figgins, J. & Morr, D. K. Hidden order transition in URu2Si2: Evidence for the emergence of a coherent Anderson lattice from scanning tunneling spectroscopy. Phys. Rev. B 86, 035129 (2012).

    Article  ADS  Google Scholar 

  22. Aynajian, P. et al. Visualizing heavy fermions emerging in a quantum critical Kondo lattice. Nature 486, 201–206 (2012).

    Article  ADS  Google Scholar 

  23. Koitzsch, A. et al. Electronic structure of CeCoIn5 from angle-resolved photoemission spectroscopy. Phys. Rev. B 79, 075104 (2009).

    Article  ADS  Google Scholar 

  24. Jia, X-W. et al. Growth characterization and Fermi surface of heavy-fermion CeCoIn5 superconductor. Chin. Phys. Lett. 28, 057401 (2011).

    Article  ADS  Google Scholar 

  25. Kohori, Y. et al. NMR and NQR studies of the heavy fermion superconductors CeTIn5 (T = Co and Ir). Phys. Rev. B 64, 134526 (2001).

    Article  ADS  Google Scholar 

  26. Curro, N. J. et al. Anomalous NMR magnetic shifts in CeCoIn5 . Phys. Rev. B 64, 180514 (2001).

    Article  ADS  Google Scholar 

  27. Pan, S. H. et al. He-3 refrigerator based very low temperature scanning tunneling microscope. Rev. Sci. Instrum. 70, 1459–1463 (1999).

    Article  ADS  Google Scholar 

  28. Park, W. K. et al. Andreev reflection in heavy-fermion superconductors and order parameter symmetry in CeCoIn5 . Phys. Rev. Lett. 100, 177001 (2008).

    Article  ADS  Google Scholar 

  29. Ernst, S. et al. Scanning tunneling microscopy studies on CeCoIn5 and CeIrIn5 . Phys. Status Solidi B 247, 624–627 (2010).

    Article  ADS  Google Scholar 

  30. Tanatar, M. A. et al. Unpaired electrons in the heavy-fermion superconductor CeCoIn5 . Phys. Rev. Lett. 95, 067002 (2005).

    Article  ADS  Google Scholar 

  31. Bianchi, A. D. et al. Superconducting vortices in CeCoIn5: Toward the Pauli-limiting field. Science 319, 177–180 (2008).

    Article  ADS  Google Scholar 

  32. Settai, R. et al. Quasi-two-dimensional Fermi surfaces and the de Haas–van Alphen oscillation in both the normal and superconducting mixed states of CeCoIn5 . J. Phys. Condens. Matter 13, L627–L634 (2001).

    Article  ADS  Google Scholar 

  33. McCollam, A. et al. Anomalous de Haas–van Alphen Oscillations in CeCoIn5 . Phys. Rev. Lett. 94, 186401 (2005).

    Article  ADS  Google Scholar 

  34. Seyfarth, G. et al. Multigap superconductivity in the heavy-fermion system CeCoIn5 . Phys. Rev. Lett. 101, 046401 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are particularly grateful to I. Eremin, J. E. Hoffman, D-H. Lee and A. R. Schmidt for advice and discussions. We acknowledge and thank A. Akbari, M. Aprili, M. H. Fischer, M. Hamidian, E-A. Kim, S. A. Kivelson, M. Norman, J. P. Reid, D-H. Lee, D. J. Scalapino and K. Shen for helpful discussions, advice and communications. Supported by US DOE under contract number DEAC02-98CH10886 (J.C.D. and C.P.) and under Award No. DE-FG02-05ER46225 (D.K.M., J.v.D.); by the UK EPSRC under programme grant ‘Topological Protection and Non-equilibrium States in Correlated Electron Systems’ (A.R., A.P.M.); M.P.A. acknowledges support through the ETH Fellowship program; A.P.M. acknowledges support of a Royal Society-Wolfson Award.

Author information

Authors and Affiliations

Authors

Contributions

F.M. and M.P.A. carried out SI-STM experiments plus the data preparation; C.P. synthesized and characterized the samples; D.K.M. and J.v.D. developed the band and gap structure models; J.C.D. supervised the project and wrote the paper with key contributions from F.M., M.P.A., D.K.M. and A.P.M. The manuscript reflects the contributions and ideas of all authors.

Corresponding authors

Correspondence to D. K. Morr or J. C. Davis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2018 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allan, M., Massee, F., Morr, D. et al. Imaging Cooper pairing of heavy fermions in CeCoIn5. Nature Phys 9, 468–473 (2013). https://doi.org/10.1038/nphys2671

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2671

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing