Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generalized molecular orbital tomography

Abstract

The emission of coherent XUV radiation from atomic or molecular gases exposed to intense infrared laser pulses, known as high harmonic generation, is of paramount interest in atomic and molecular physics as well as in attosecond science. The emitted radiation contains a wealth of information about the structure of its generating medium, which inspired vigorous efforts to tomographically image the valence orbital of atoms and molecules. The orbital retrieval is nevertheless seriously hindered by the complexity of the harmonic emission process, as recently demonstrated by several theoretical and experimental works. Here we present a novel approach for molecular orbital tomography that contributes to overcome those difficulties, opening intriguing perspectives on coherent XUV imaging of complex species by high-order harmonic generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-order harmonic spectra measured in CO2 molecules as a function of the delay between the aligning and generating pulses.
Figure 2: Single-molecule contribution to high-order harmonic generation in CO2, retrieved with a self-referencing approach.
Figure 3: High-order harmonic spectra measured in aligned CO2 molecules for different pulse intensities and wavelengths.
Figure 4: HOMO reconstruction in CO2.

Similar content being viewed by others

References

  1. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  ADS  Google Scholar 

  2. Patchkovskii, S., Zhao, Z., Brabec, T. & Villeneuve, D. M. High harmonic generation and molecular orbital tomography in multielectron systems: Beyond the single active electron approximation. Phys. Rev. Lett. 97, 123003 (2006).

    Article  ADS  Google Scholar 

  3. McFarland, B. K., Farrell, J. P., Bucksbaum, P. H. & Gühr, M. High harmonic generation from multiple orbitals in N2 . Science 322, 1232–1235 (2008).

    Article  ADS  Google Scholar 

  4. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    Article  ADS  Google Scholar 

  5. Boutu, W. et al. Coherent control of attosecond emission from aligned molecules. Nature Phys. 4, 545–549 (2008).

    Article  Google Scholar 

  6. Haessler, S. et al. Attosecond imaging of molecular electronic wavepackets. Nature Phys. 6, 200–206 (2010).

    Article  ADS  Google Scholar 

  7. Walters, Z. B., Tonzani, S. & Greene, C. H. Limits of the plane wave approximation in the measurement of molecular properties. J. Phys. Chem. 112, 9439–9447 (2008).

    Article  Google Scholar 

  8. Zhou, X. et al. Molecular recollision interferometry in high harmonic generation. Phys. Rev. Lett. 100, 073902 (2008).

    Article  ADS  Google Scholar 

  9. Mairesse, Y. et al. High-order harmonic transient grating spectroscopy in a molecular jet. Phys. Rev. Lett. 100, 143903 (2008).

    Article  ADS  Google Scholar 

  10. Levesque, J. et al. Polarization state of high-order harmonic emission from aligned molecules. Phys. Rev. Lett. 99, 243001 (2007).

    Article  ADS  Google Scholar 

  11. Zhou, X. et al. Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields. Phys. Rev. Lett. 102, 073902 (2009).

    Article  ADS  Google Scholar 

  12. Vozzi, C. et al. Controlling two-center interference in molecular high harmonic generation. Phys. Rev. Lett. 95, 153902 (2005).

    Article  ADS  Google Scholar 

  13. Le, A. T., Lucchese, R. R., Lee, M. T. & Lin, C. D. Probing molecular frame photoionization via laser generated high-order harmonics from aligned molecules. Phys. Rev. Lett. 102, 203001 (2009).

    Article  ADS  Google Scholar 

  14. Smirnova, O. et al. Attosecond circular dichroism spectroscopy of polyatomic molecules. Phys. Rev. Lett. 102, 063601 (2009).

    Article  ADS  Google Scholar 

  15. Stapelfeldt, H. & Seideman, T. Colloquium: Aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543–557 (2003).

    Article  ADS  Google Scholar 

  16. Popa, C. & Zdunek, R. Kaczmarz extended algorithm for tomographic image reconstruction from limited-data. Math. Comput. Simul. 65, 579–598 (2004).

    Article  MathSciNet  Google Scholar 

  17. Le, A., Lucchese, R. R., Tonzani, S., Morishita, T. & Lin, C. D. Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009).

    Article  ADS  Google Scholar 

  18. McFarland, B. K., Farrell, J. P., Bucksbaum, P. H. & Gühr, M. High-order harmonic phase in molecular nitrogen. Phys. Rev. A 80, 033412 (2009).

    Article  ADS  Google Scholar 

  19. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  20. Shan, B. & Chang, Z. Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field. Phys. Rev. A 65, 011804R (2001).

    Article  ADS  Google Scholar 

  21. Torres, R. et al. Revealing molecular structure and dynamics through high-order harmonic generation driven by mid-IR fields. Phys. Rev. A 81, 051802(R) (2010).

    Article  ADS  Google Scholar 

  22. Wörner, H. J., Bertrand, J. B., Hockett, P., Corkum, P. B. & Villeneuve, D. M. Controlling the interference of multiple molecular orbitals in high-harmonic generation. Phys. Rev. Lett. 104, 233904 (2010).

    Article  ADS  Google Scholar 

  23. DALTON, a molecular electronic structure program, Release 2.0 (2005), see http://www.kjemi.uio.no/software/dalton/dalton.html.

  24. Vozzi, C., Torres, R., Negro, M., Brugnera, L. & Siegel, T. et al. High harmonic generation spectroscopy of hydrocarbons. Appl. Phys. Lett. 97, 241103 (2010).

    Article  ADS  Google Scholar 

  25. Vozzi, C. et al. Millijoule-level phase-stabilized few-optical-cycle infrared parametric source. Opt. Lett. 32, 2957–2959 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the partial financial support from the Cariplo Foundation through the project 2009-2562 and from the European Union within the contract n. 228334 JRA-ALADIN (Laserlab Europe II). We gratefully acknowledge the contributions of F. Frassetto, L. Poletto and P. Villoresi in the development of the XUV spectrometer. We thank C. Altucci, P. Corkum, P. Hockett, M. Ivanov, J. Marangos, A. Staudte, C. Smeenk, R. Torres, R. Velotta and D. Villeneuve for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and C.V. planned the experiment. F.C., M. Negro, S.S. and C.V. designed and realized the experimental set-up. S.D.S., M. Nisoli and G.S. contributed to the development of the experimental set-up. M. Negro and C.V. carried out the measurements and analysed the data. S.S. developed the algorithms for the self-referenced HOMO reconstruction and performed the numerical simulations. All the authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to S. Stagira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vozzi, C., Negro, M., Calegari, F. et al. Generalized molecular orbital tomography. Nature Phys 7, 822–826 (2011). https://doi.org/10.1038/nphys2029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2029

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing