Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of covalent bonding on magnetism and the missing neutron intensity in copper oxide compounds

Abstract

Theories involving highly energetic spin fluctuations are among the leading contenders for explaining high-temperature superconductivity in the cuprates1. These theories could be tested by inelastic neutron scattering (INS), as a change in the magnetic scattering intensity that marks the entry into the superconducting state provides a precise quantitative measure of the spin-interaction energy involved in the superconductivity2,3,4,5,6,7,8,9,10,11. However, the absolute intensities of spin fluctuations measured in neutron scattering experiments vary widely, and are usually much smaller than expected from fundamental sum rules, resulting in ‘missing’ INS intensity2,3,4,5,12,13. Here, we solve this problem by studying magnetic excitations in the one-dimensional related compound, Sr2CuO3, for which an exact theory of the dynamical spin response has recently been developed. In this case, the missing INS intensity can be unambiguously identified and associated with the strongly covalent nature of magnetic orbitals. We find that whereas the energies of spin excitations in Sr2CuO3 are well described by the nearest-neighbour spin-1/2 Heisenberg Hamiltonian, the corresponding magnetic INS intensities are modified markedly by the strong 2p–3d hybridization of Cu and O states. Hence, the ionic picture of magnetism, where spins reside on the atomic-like 3d orbitals of Cu2+ ions, fails markedly in the cuprates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure and electronic orbitals in Sr2CuO3.
Figure 2: Net magnetic INS intensity from Sr2CuO3 plotted as a function of momentum parallel to the chains and energy transfer.
Figure 3: Selected constant-energy cuts through the data as a function of momentum transfer parallel to Cu–O chains.
Figure 4: The intensity prefactor A and the exchange integral J.

Similar content being viewed by others

References

  1. Eschrig, M. The effect of collective spin-1 excitations on electronic spectra in high-Tc superconductors. Adv. Phys. 55, 47–183 (2006).

    Article  ADS  Google Scholar 

  2. Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 429, 534–538 (2004).

    Article  ADS  Google Scholar 

  3. Hayden, S. M., Mook, H. A., Dai, P., Perring, T. G. & Doğan, F. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004).

    Article  ADS  Google Scholar 

  4. Fong, H. F. et al. Neutron scattering from magnetic excitations in Bi2Sr2CaCu2O8+δ . Nature 398, 588–591 (1999).

    Article  ADS  Google Scholar 

  5. Bourges, P., Casalta, H., Ivanov, A. S. & Petitgrand, D. Superexchange coupling and spin susceptibility spectral weight in undoped monolayer cuprates. Phys. Rev. Lett. 79, 4906–4909 (1997).

    Article  ADS  Google Scholar 

  6. Coldea, R. et al. Spin waves and electron interactions in La2CuO4 . Phys. Rev. Lett. 86, 5377–5380 (2001).

    Article  ADS  Google Scholar 

  7. Dahm, T. et al. Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor. Nature Phys. 5, 217–221 (2009).

    Article  ADS  Google Scholar 

  8. Hinkov, V. et al. Spin dynamics in the pseudogap state of a high-temperature superconductor. Nature Phys. 3, 780–785 (2007).

    Article  ADS  Google Scholar 

  9. Woo, H. et al. Magnetic energy change available to superconducting condensation in optimally doped YBa2Cu3O6.95 . Nature Phys. 396, 600–604 (2006).

    Article  ADS  Google Scholar 

  10. Demler, E. & Zhang, F.-C. Quantitative test of a microscopic mechanism of high-temperature superconductivity. Nature 396, 733–735 (1998).

    Article  ADS  Google Scholar 

  11. Kee, H.-Y., Kivelson, S. A. & Aeppli, G. Spin-1 neutron resonance peak cannot account for electronic anomalies in the cuprate superconductors. Phys. Rev. Lett. 88, 257002 (2002).

    Article  ADS  Google Scholar 

  12. Lorenzana, J., Seibold, G. & Coldea, R. Sum rules and missing spectral weight in magnetic neutron scattering in the cuprates. Phys. Rev. B 72, 224511 (2005).

    Article  ADS  Google Scholar 

  13. Zaliznyak, I. A. et al. Spinons in the strongly correlated copper oxide chains in SrCuO2 . Phys. Rev. Lett. 93, 087202 (2004).

    Article  ADS  Google Scholar 

  14. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  ADS  Google Scholar 

  15. Anderson, P. W. New approach to the theory of superexchange interaction. Phys. Rev. 79, 2–13 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  16. Pauling, L. The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc. 53, 1367–1400 (1931).

    Article  Google Scholar 

  17. Alperin, H. A. Aspherical 3d electron distribution in NI++. Phys. Rev. Lett. 6, 55–57 (1961).

    Article  ADS  Google Scholar 

  18. Hubbard, J. & Marshall, W. Covalency effects in neutron diffraction from ferromagnetic and antiferromagnetic salts. Proc. Phys. Soc. 86, 561–572 (1965).

    Article  ADS  Google Scholar 

  19. Plakhty, V. P., Gukasov, A. G., Papoular, R. J. & Smirnov, O. P. Spin density on ligands O2− and covalency of Fe3+ ions in octahedral sites of the Ca3Fe2Ge3O12 garnet: A polarised neutron diffraction study. Europhys. Lett. 48, 233–239 (1999).

    Article  ADS  Google Scholar 

  20. Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev B 37, 3759–3762 (1988).

    Article  ADS  Google Scholar 

  21. Shirane, G., Shapiro, S. M. & Tranquada, J. M. Neutron Scattering with a Triple Axis Spectrometer 35–54, 126 (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  22. Pickett, W. E. Electronic structure of the high-Tc cuprates. Rev. Mod. Phys. 61, 433–512 (1989).

    Article  ADS  Google Scholar 

  23. Ku, W., Rosner, H., Pickett, W. E. & Scalettar, R. T. Insulating ferromagnetism in La4Ba2Cu2O10: An ab initio Wannier function analysis. Phys. Rev. Lett. 89, 167204 (2002).

    Article  ADS  Google Scholar 

  24. Neudert, R. et al. Four-band extended Hubbard Hamiltonian for the one-dimensional cuprate Sr2CuO3: Distribution of oxygen holes and its relation to strong intersite Coulomb interaction. Phys. Rev. B 62, 10752–10765 (2000).

    Article  ADS  Google Scholar 

  25. Caux, J.-S. & Hagemans, R. The four-spinon dynamical structure factor of the Heisenberg chain. J. Stat. Mech. P12013 (2006).

  26. Suzuura, H., Yasuhara, H., Furusaki, A., Nagaosa, N. & Tokura, Y. Singularities in optical spectra of quantum spin chains. Phys. Rev. Lett. 76, 2579–2582 (1996).

    Article  ADS  Google Scholar 

  27. Kojima, K. M. et al. Reduction of ordered moment and Néel temperature of quasi-one-dimensional antiferromagnets Sr2CuO3 and Ca2CuO3 . Phys. Rev. Lett. 78, 1787–1790 (1997).

    Article  ADS  Google Scholar 

  28. Fretfolt, T., Shirane, G., Mitsuda, S., Remeika, J. P. & Cooper, A. S. Magnetic form factor in La2CuO4 . Phys. Rev. B 37, 137–142 (1988).

    Article  ADS  Google Scholar 

  29. Shamoto, S., Sato, M., Tranquada, J. M., Sternlieb, B. J. & Shirane, G. Neutron-scattering study of antiferromagnetism in YBa2Cu3O6.15 . Phys. Rev. B 48, 13817–13825 (1993).

    Article  ADS  Google Scholar 

  30. Kaplan, T. A., Mahanti, S. D. & Chang, H. Spin fluctuations and covalence in the half-filled narrow-band Hubbard model. Phys. Rev. B 45, R2565–R2568 (1992).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with J. Tranquada, F. Essler, H. Benthien and D. F. McMorrow. Work at BNL was supported by the Office of Science, US Department of Energy under Contract No. DE-AC02-98CH10886. J.-S.C. acknowledges support from the FOM foundation.

Author information

Authors and Affiliations

Authors

Contributions

Project planning: I.A.Z., T.G.P.; sample preparation: G.D.G.; experiments: I.A.Z., T.G.P., A.C.W., A.T.S.; theory: J.S.C., C.C.L., W.K.; data analysis: A.C.W., T.G.P., I.A.Z.; paper writing: I.A.Z., A.C.W.

Corresponding author

Correspondence to Igor A. Zaliznyak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walters, A., Perring, T., Caux, JS. et al. Effect of covalent bonding on magnetism and the missing neutron intensity in copper oxide compounds. Nature Phys 5, 867–872 (2009). https://doi.org/10.1038/nphys1405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1405

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing