Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phase-coherent microwave-to-optical link with a self-referenced microcomb

Abstract

Precise measurements of the frequencies of light waves have become common with mode-locked laser frequency combs1. Despite their huge success, optical frequency combs currently remain bulky and expensive laboratory devices. Integrated photonic microresonators are promising candidates for comb generators in out-of-the-lab applications, with the potential for reductions in cost, power consumption and size2. Such advances will significantly impact fields ranging from spectroscopy and trace gas sensing3 to astronomy4, communications5 and atomic time-keeping6,7. Yet, in spite of the remarkable progress shown over recent years8,9,10, microresonator frequency combs (‘microcombs’) have been without the key function of direct f–2f self-referencing1, which enables precise determination of the absolute frequency of each comb line. Here, we realize this missing element using a 16.4 GHz microcomb that is coherently broadened to an octave-spanning spectrum and subsequently fully phase-stabilized to an atomic clock. We show phase-coherent control of the comb and demonstrate its low-noise operation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up for f–2f self-referencing of a microcomb.
Figure 2: Carrier envelope offset frequency measurement.
Figure 3: Absolute optical frequency measurement and out-of-loop validation.
Figure 4: Carrier envelope offset frequency stabilization.
Figure 5: Stabilizing a self-referenced microcomb to a hydrogen maser frequency reference.

Similar content being viewed by others

References

  1. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  2. Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  3. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Article  Google Scholar 

  4. Steinmetz, T. et al. Laser frequency combs for astronomical observations. Science 321, 1335–1337 (2008).

    Article  ADS  Google Scholar 

  5. Pfeifle, J. et al. Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. Phys. Rev. Lett. 114, 093902 (2015).

    Article  ADS  Google Scholar 

  6. Savchenkov, A. A. et al. Stabilization of a Kerr frequency comb oscillator. Opt. Lett. 38, 2636–2639 (2013).

    Article  ADS  Google Scholar 

  7. Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

    Article  ADS  Google Scholar 

  8. Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 38, 37–39 (2013).

    Article  ADS  Google Scholar 

  9. Herr, T. et al. Temporal solitons in optical microresonators. Nature Photon. 8, 145–152 (2013).

    Article  ADS  Google Scholar 

  10. Jost, J. D. et al. Counting the cycles of light using a self-referenced optical microresonator. Optica 2, 706–711 (2015).

    Article  ADS  Google Scholar 

  11. Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

    Article  ADS  Google Scholar 

  12. Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon. 4, 37–40 (2010).

    Article  ADS  Google Scholar 

  13. Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photon. 4, 41–45 (2010).

    Article  ADS  Google Scholar 

  14. Ferdous, F. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photon. 5, 770–776 (2011).

    Article  ADS  Google Scholar 

  15. Grudinin, I. S. & Yu, N. Dispersion engineering of crystalline resonators via microstructuring. Optica 2, 221–224 (2015).

    Article  ADS  Google Scholar 

  16. Jung, H., Xiong, C., Fong, K. Y., Zhang, X. F. & Tang, H. X. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett. 38, 2810–2813 (2013).

    Article  ADS  Google Scholar 

  17. Hausmann, B., Bulu, I., Venkataraman, V., Deotare, P. & Loncar, M. Diamond nonlinear photonics. Nature Photon. 8, 369–374 (2014).

    Article  ADS  Google Scholar 

  18. Yang, K. et al. Broadband dispersion-engineered microresonator on a chip. Nature Photon. 10, 316–320 (2016).

    Article  ADS  Google Scholar 

  19. Del'Haye, P., Arcizet, O., Schliesser, A., Holzwarth, R. & Kippenberg, T. J. Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett. 101, 053903 (2008).

    Article  ADS  Google Scholar 

  20. Papp, S. B., Del'Haye, P. & Diddams, S. A. Mechanical control of a microrod-resonator optical frequency comb. Phys. Rev. X 3, 031003 (2013).

    Google Scholar 

  21. Del'Haye, P., Papp, S. B. & Diddams, S. A. Hybrid electro-optically modulated microcombs. Phys. Rev. Lett. 109, 263901 (2012).

    Article  ADS  Google Scholar 

  22. Jost, J. et al. All-optical stabilization of a soliton frequency comb in a crystalline microresonator. Opt. Lett. 40, 4723–4726 (2015).

    Article  ADS  Google Scholar 

  23. Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nature Photon. 6, 369–373 (2012).

    Article  ADS  Google Scholar 

  24. Del'Haye, P., Beha, K., Papp, S. B. & Diddams, S. A. Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys. Rev. Lett. 112, 043905 (2014).

    Article  ADS  Google Scholar 

  25. Del'Haye, P. et al. Phase steps and resonator detuning measurements in microresonator frequency combs. Nature Commun. 6, 5668 (2015).

    Article  ADS  Google Scholar 

  26. Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  27. Beha, K. et al. Self-referencing a continuous-wave laser with electro-optic modulation. Preprint at http://arxiv.org/abs/1507.06344 (2015).

  28. Kuyken, B. et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nature Commun. 6, 6310 (2015).

    Article  ADS  Google Scholar 

  29. Mayer, A. S. et al. Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides. Opt. Express 23, 15440–15451 (2015).

    Article  ADS  Google Scholar 

  30. Del'Haye, P. Optical Frequency Comb Generation in Monolithic Microresonators. PhD thesis, Ludwig Maximilian Univ. Munich (2011).

    Google Scholar 

  31. Del'Haye, P., Arcizet, O., Gorodetsky, M. L., Holzwarth, R. & Kippenberg, T. J. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature Photon. 3, 529–533 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institute of Standards and Technology, the National Physical Laboratory, the California Institute of Technology, the Defense Advanced Research Projects Agency Quantum—Assisted Sensing and Readout programme, the Air Force Office of Scientific Research and the National Aeronautics and Space Administration. P.D. acknowledges support from the Humboldt Foundation. D.C.C. acknowledges support from the National Science Foundation Graduate Research Fellowship Program under grant no. DGE 1144083.

Author information

Authors and Affiliations

Authors

Contributions

P.D., S.B.P. and S.A.D. conceived the experiments. P.D. and A.C. designed and performed the experiments. T.F. contributed to the fceo stabilization. K.B. and D.C.C. contributed to the nonlinear spectral broadening. K.Y.Y., H.L. and K.J.V. provided the microresonator. P.D. and S.A.D. prepared the manuscript, with input from all co-authors.

Corresponding authors

Correspondence to Pascal Del'Haye or Scott A. Diddams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del'Haye, P., Coillet, A., Fortier, T. et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nature Photon 10, 516–520 (2016). https://doi.org/10.1038/nphoton.2016.105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing