Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Certified quantum non-demolition measurement of a macroscopic material system

Abstract

Quantum non-demolition (QND) measurements improve sensitivity by evading measurement back-action1. The technique was first proposed to detect mechanical oscillations in gravity-wave detectors2 and demonstrated in the measurement of optical fields3,4, which led to the development of rigorous criteria to distinguish QND from similar non-classical measurements4. Recent QND measurements of macroscopic material systems such as atomic ensembles5,6,7,8,9,10 and mechanical oscillators11,12,13 show some QND features, but not full QND character. Here we demonstrate certified QND measurement of the collective spin of an atomic ensemble. We observed quantum-state preparation (QSP) and information-damage trade-off (IDT) beyond their classical limits by seven and 12 standard deviations, respectively. Our techniques complement recent work with microscopic systems14,15,16 and can be used for quantum metrology6,7,8,9,10,17 and memory18, the preparation19 and detection20 of non-Gaussian states, and proposed quantum simulation21,22,23 and information24,25 protocols. They should enable QND measurements of dynamical quantum variables21,22,26 and the realization of QND-based quantum information protocols19,24,25.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and measurement pulse sequence used to verify QND measurement of atomic spins.
Figure 2: Experimental verification of QSP and non-classical IDT in a QND measurement of atomic spins.

Similar content being viewed by others

References

  1. Braginsky, V. B., Vorontsov, Y. I. & Thorne, K. S. Quantum nondemolition measurements. Science 209, 547–557 (1980).

    Article  ADS  Google Scholar 

  2. Braginsky, V. B. & Vorontsov, Y. I. Quantum-mechanical limitations in macroscopic experiments and modern experimental technique. Sov. Phys. Usp. 17, 644–650 (1975).

    Article  ADS  Google Scholar 

  3. Roch, J. F., Roger, G., Grangier, P., Courty, J. M. & Reynaud, S. Quantum nondemolition measurements in optics – a review and some recent experimental results. Appl. Phys. B 55, 291–297 (1992).

    Article  ADS  Google Scholar 

  4. Grangier, P., Levenson, J. A. & Poizat, J-P. Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998).

    Article  ADS  Google Scholar 

  5. Kuzmich, A., Mandel, L. & Bigelow, N. P. Generation of spin squeezing via continuous quantum nondemolition measurement. Phys. Rev. Lett. 85, 1594–1597 (2000).

    Article  ADS  Google Scholar 

  6. Takano, T., Fuyama, M., Namiki, R. & Takahashi, Y. Spin squeezing of a cold atomic ensemble with the nuclear spin of one-half. Phys. Rev. Lett. 102, 033601 (2009).

    Article  ADS  Google Scholar 

  7. Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).

    Article  ADS  Google Scholar 

  8. Schleier-Smith, M. H., Leroux, I. D. & Vuletić, V. States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604 (2010).

    Article  ADS  Google Scholar 

  9. Chen, Z., Bohnet, J. G., Sankar, S. R., Dai, J. & Thompson, J. K. Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting. Phys. Rev. Lett. 106, 133601 (2011).

    Article  ADS  Google Scholar 

  10. Sewell, R. J. et al. Magnetic sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev. Lett. 109, 253605 (2012).

    Article  ADS  Google Scholar 

  11. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  ADS  Google Scholar 

  12. Hertzberg, J. B. et al. Back-action-evading measurements of nanomechanical motion. Nature Phys. 6, 213–217 (2010).

    Article  ADS  Google Scholar 

  13. Vanner, M. R., Hofer, J., Cole, G. D. & Aspelmeyer, M. Experimental pulsed quantum optomechanics. Preprint at http://lanl.arxiv.org/abs/1211.7036 (2012).

  14. Ralph, T. C., Bartlett, S. D., O'Brien, J. L., Pryde, G. J. & Wiseman, H. M. Quantum nondemolition measurements for quantum information. Phys. Rev. A 73, 012113 (2006).

    Article  ADS  Google Scholar 

  15. Lupascu, A. et al. Quantum non-demolition measurement of a superconducting two-level system. Nature Phys. 3, 119–125 (2007).

    Article  ADS  Google Scholar 

  16. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    Article  ADS  Google Scholar 

  17. Inoue, R., Tanaka, S., Namiki, R., Sagawa, T. & Takahashi, Y. Unconditional quantum-noise suppression via measurement-based quantum feedback. Phys. Rev. Lett. 110, 163602 (2013).

    Article  ADS  Google Scholar 

  18. Jensen, K. et al. Quantum memory for entangled continuous-variable states. Nature Phys. 7, 13–16 (2011).

    Article  ADS  Google Scholar 

  19. Massar, S. & Polzik, E. S. Generating a superposition of spin states in an atomic ensemble. Phys. Rev. Lett. 91, 060401 (2003).

    Article  ADS  Google Scholar 

  20. Dubost, B . et al. Efficient quantification of non-Gaussian spin distributions. Phys. Rev. Lett. 108, 183602 (2012).

    Article  ADS  Google Scholar 

  21. Eckert, K., Zawitkowski, L., Sanpera, A., Lewenstein, M. & Polzik, E. S. Quantum polarization spectroscopy of ultracold spinor gases. Phys. Rev. Lett. 98, 100404 (2007).

    Article  ADS  Google Scholar 

  22. Eckert, K. et al. Quantum non-demolition detection of strongly correlated systems. Nature Phys. 4, 50–54 (2008).

    Article  ADS  Google Scholar 

  23. Hauke, P., Sewell, R. J., Mitchell, M. W. & Lewenstein, M. Quantum control of spin correlations in ultracold lattice gases. Phys. Rev. A 87, 021601 (2013).

    Article  ADS  Google Scholar 

  24. Takano, T., Fuyama, M., Namiki, R. & Takahashi, Y. Continuous-variable quantum swapping gate between light and atoms. Phys. Rev. A 78, 010307 (2008).

    Article  ADS  Google Scholar 

  25. Marek, P. & Filip, R. Noise-resilient quantum interface based on quantum nondemolition interactions. Phys. Rev. A 81, 042325 (2010).

    Article  ADS  Google Scholar 

  26. Tsang, M., Wiseman, H. & Caves, C. Fundamental quantum limit to waveform estimation. Phys. Rev. Lett. 106, 090401 (2011).

    Article  ADS  Google Scholar 

  27. Tsang, M. & Caves, C. M. Evading quantum mechanics: engineering a classical subsystem within a quantum environment. Phys. Rev. X 2, 031016 (2012).

    Google Scholar 

  28. Tóth, G. & Mitchell, M. W. Generation of macroscopic singlet states in atomic ensembles. New J. Phys. 12, 053007 (2010).

    Article  ADS  Google Scholar 

  29. Mitchell, M. W., Koschorreck, M., Kubasik, M., Napolitano, M. & Sewell, R. J. Certified quantum non-demolition measurement of material systems. New J. Phys. 14, 085021 (2012).

    Article  ADS  Google Scholar 

  30. Hammerer, K., Mølmer, K., Polzik, E. S. & Cirac, J. I. Light-matter quantum interface. Phys. Rev. A 70, 044304 (2004).

    Article  ADS  Google Scholar 

  31. Kubasik, M. et al. Polarization-based light-atom quantum interface with an all-optical trap. Phys. Rev. A 79, 043815 (2009).

    Article  ADS  Google Scholar 

  32. Koschorreck, M., Napolitano, M., Dubost, B. & Mitchell, M. W. Quantum nondemolition measurement of large-spin ensembles by dynamical decoupling. Phys. Rev. Lett. 105, 093602 (2010).

    Article  ADS  Google Scholar 

  33. Koschorreck, M., Napolitano, M., Dubost, B. & Mitchell, M. W. Sub-projection-noise sensitivity in broadband atomic magnetometry. Phys. Rev. Lett. 104, 093602 (2010).

    Article  ADS  Google Scholar 

  34. de Echaniz, S. R. et al. Conditions for spin squeezing in a cold 87Rb ensemble. J. Opt. B 7, S548 (2005).

    Article  Google Scholar 

  35. Hammerer, K., Aspelmeyer, M., Polzik, E. S. & Zoller, P. Establishing Einstein–Poldosky–Rosen channels between nanomechanics and atomic ensembles. Phys. Rev. Lett. 102, 020501 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science and Innovation under the project Magnetometria ultra-precisa basada en optica quantica (MAGO) (Ref. FIS2011-23520), by the European Research Council under the project Atomic Quantum Metrology (AQUMET) and by Fundació Privada CELLEX Barcelona.

Author information

Authors and Affiliations

Authors

Contributions

R.J.S. and M.W.M. conceived and designed the project; R.J.S., M.N., N.B. and G.C. performed the experiment; R.J.S. performed the data analysis; R.J.S. and M.W.M. co-wrote the manuscript with feedback from all the authors.

Corresponding author

Correspondence to R. J. Sewell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sewell, R., Napolitano, M., Behbood, N. et al. Certified quantum non-demolition measurement of a macroscopic material system. Nature Photon 7, 517–520 (2013). https://doi.org/10.1038/nphoton.2013.100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing