Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fluctuations and correlations in modulation instability

Abstract

Stochastically driven nonlinear processes are responsible for spontaneous pattern formation and instabilities in numerous natural and artificial systems, including well-known examples such as sand ripples, cloud formations, water waves, animal pigmentation and heart rhythms1,2,3. Technologically, a type of such self-amplification drives free-electron lasers4,5 and optical supercontinuum sources6,7 whose radiation qualities, however, suffer from the stochastic origins8,9,10,11. Through time-resolved observations, we identify intrinsic properties of these fluctuations that are hidden in ensemble measurements. We acquire single-shot spectra of modulation instability produced by laser pulses in glass fibre at megahertz real-time capture rates. The temporally confined nature of the gain physically limits the number of amplified modes, which form an antibunched arrangement as identified from a statistical analysis of the data. These dynamics provide an example of pattern competition and interaction in confined nonlinear systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Capturing modulation instability in single-shot measurements.
Figure 2: Experimental investigation of single-shot modulation instability.
Figure 3: Autocorrelation analysis of experimental single-shot modulation instability spectra.
Figure 4: Analysis of modulation instability in nonlinear optical fibre by numerical simulation.

Similar content being viewed by others

References

  1. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

    Article  ADS  Google Scholar 

  2. Elbelrhiti, H., Claudin, P. & Andreotti, B. Field evidence for surface-wave-induced instability of sand dunes. Nature 437, 720–723 (2005).

    Article  ADS  Google Scholar 

  3. Benjamin, T. B. & Feir, J. E. The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27, 417–430 (1967).

    Article  ADS  Google Scholar 

  4. McNeil, B. W. J. & Thompson, N. R. X-ray free-electron lasers. Nature Photon. 4, 814–821 (2010).

    Article  ADS  Google Scholar 

  5. Bonifacio, R., Pellegrinia, C. & Narducci, L. M. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984).

    Article  ADS  Google Scholar 

  6. Agrawal, G. P. Nonlinear Fiber Optics 4th edn (Academic Press, 2007).

    MATH  Google Scholar 

  7. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  8. Wellhöfer, M. et al. Photoelectron spectroscopy as a non-invasive method to monitor SASE-FEL spectra. J. Instrum. 3, P02003 (2008).

    Article  Google Scholar 

  9. Toleikis, S. et al. Soft X-ray scattering using FEL radiation for probing near-solid density plasmas at few electron volt temperatures. High Energy Density Phys. 6, 15–20 (2010).

    Article  ADS  Google Scholar 

  10. Islam, M. N. et al. Femtosecond distributed soliton spectrum in fibers. J. Opt. Soc. Am. B 6, 1149–1158 (1989).

    Article  ADS  Google Scholar 

  11. Nakazawa, M., Kubota, H. & Tamura, K. Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise. Opt. Lett. 24, 318–320 (1999).

    Article  ADS  Google Scholar 

  12. Thornhill, S. G. & ter Haar, D. Langmuir turbulence and modulational instability. Phys. Rep. 43, 43–99 (1978).

    Article  ADS  Google Scholar 

  13. Kivshar, Y. S. & Peyrard, M. Modulational instabilities in discrete lattices. Phys. Rev. A 46, 3198–3205 (1992).

    Article  ADS  Google Scholar 

  14. Strecker, K. E., Partridge, G. B., Truscott, A. G. & Hulet, R. G. Formation and propagation of matter-wave soliton trains. Nature 417, 150–153 (2002).

    Article  ADS  Google Scholar 

  15. Konotop, V. V. & Salerno, M. Modulational instability in Bose–Einstein condensates in optical lattices. Phys. Rev. A 65, 021602 (2002).

    Article  ADS  Google Scholar 

  16. Tai, K., Hasegawa, A. & Tomita, A. Observation of modulational instability in optical fibers. Phys. Rev. Lett. 56, 135–138 (1986).

    Article  ADS  Google Scholar 

  17. Kip, D., Soljacic, M., Segev, M., Eugeniev, E. & Christodoulides, D. N. Modulation instability and pattern formation in spatially incoherent light beams. Science 290, 495–498 (2000).

    Article  ADS  Google Scholar 

  18. Zakharov, V. E. & Ostrovsky, L. A. Modulation instability: the beginning. Physica D 238, 540–548 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  19. Kharif, C. & Pelinovsky, E. Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B 22, 603–634 (2003).

    Article  MathSciNet  Google Scholar 

  20. Onorato, M., Osborne, A. R., Serio, M. & Bertone, S. Freak waves in random oceanic sea states. Phys. Rev. Lett. 86, 5831–5834 (2001).

    Article  ADS  Google Scholar 

  21. Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1057 (2007).

    Article  ADS  Google Scholar 

  22. Akhmediev, N. & Korneev, V. I. Modulation instability and periodic solutions of the nonlinear Schrodinger equation. Theor. Math. Phys. 69, 1089–1093 (1986).

    Article  MathSciNet  Google Scholar 

  23. Van Simaeys, G., Emplit, P. & Haelterman, M. Experimental demonstration of the Fermi–Pasta–Ulam recurrence in a modulationally unstable optical wave. Phys. Rev. Lett. 87, 033902 (2001).

    Article  ADS  Google Scholar 

  24. Dudley, J. M., Genty, G., Dias, F., Kibler, B. & Akhmediev, N. Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009).

    Article  ADS  Google Scholar 

  25. Kibler, B. et al. The Peregrine soliton in nonlinear fibre optics. Nature Photon. 6, 790–795 (2010).

    ADS  Google Scholar 

  26. Nakazawa, M., Suzuki, K., Kubota, H. & Haus, H. A. Higher-order solitons and modulational instability. Phys. Rev. A 39, 5768–5776 (1989).

    Article  ADS  Google Scholar 

  27. Kutz, J. N., Lyngå, C. & Eggleton, B. J. Enhanced supercontinuum generation through dispersion-management. Opt. Express 13, 3989–3998 (2005).

    Article  ADS  Google Scholar 

  28. Solli, D. R., Ropers, C. & Jalali, B. Active control of rogue waves for stimulated supercontinuum generation. Phys. Rev. Lett. 101, 233902 (2008).

    Article  ADS  Google Scholar 

  29. Solli, D. R., Jalali, B. & Ropers, C. Seeded supercontinuum generation with optical parametric down-conversion. Phys. Rev. Lett. 105, 233902 (2010).

    Article  ADS  Google Scholar 

  30. Solli, D. R., Ropers, C. & Jalali, B. Rare frustration of optical supercontinuum generation. Appl. Phys. Lett. 96, 151108 (2010).

    Article  ADS  Google Scholar 

  31. Kelkar, P. V., Coppinger, F., Bhushan, A. S. & Jalali, B. Time-domain optical sensing. Electron. Lett. 35, 1661–1662 (1999).

    Article  Google Scholar 

  32. Mussot, A. et al. Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. Opt. Express 12, 2838–2843 (2004).

    Article  ADS  Google Scholar 

  33. Droques, M. et al. Symmetry-breaking dynamics of the modulational instability spectrum. Opt. Lett. 36, 1359–1361 (2011).

    Article  ADS  Google Scholar 

  34. Intonti, F. et al. Quantum mechanical repulsion of exciton levels in a disordered quantum well. Phys. Rev. Lett. 87, 076801 (2001).

    Article  ADS  Google Scholar 

  35. Garay-Palmett, K. et al. Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber. Opt. Express 15, 14870–14886 (2007).

    Article  ADS  Google Scholar 

  36. Solli, D. R., Gupta, S. & Jalali, B. Optical phase recovery in the dispersive Fourier transform. Appl. Phys. Lett. 95, 231108 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation including CIAN ERC, the Defense Advanced Research Project Agency (DARPA/DSO) Physical Intelligence programme and the Deutsche Forschungsgemeinschaft (DFG-ZUK 45/1). D.R.S. thanks B. de La Brea for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors were closely involved in this study and contributed to the ideas, realization of the experiments, data analysis and interpretation, and writing of the paper.

Corresponding author

Correspondence to D. R. Solli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solli, D., Herink, G., Jalali, B. et al. Fluctuations and correlations in modulation instability. Nature Photon 6, 463–468 (2012). https://doi.org/10.1038/nphoton.2012.126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing