Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optofluidics for energy applications

Abstract

Since its emergence as a field, optofluidics has developed unique tools and techniques for enabling the simultaneous delivery of light and fluids with microscopic precision. In this Review, we describe the possibilities for applying these same capabilities to the field of energy. We focus in particular on optofluidic opportunities in sunlight-based fuel production in photobioreactors and photocatalytic systems, as well as optofluidically enabled solar energy collection and control. We then provide a series of physical and scaling arguments that demonstrate the potential benefits of incorporating optofluidic elements into energy systems. Throughout the Review we draw attention to the ways in which optofluidics must evolve to enable the up-scaling required to impact the energy field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Various optofluidic effects found in solar-energy collection and conversion processes.
Figure 2: Photobioreactors for microorganism-based energy production.
Figure 3: Optofluidic efforts to improve photobioreactor performance.
Figure 4: Photocatalytic reactors for energy production.
Figure 5: Optofluidic techniques for guiding and collecting light in energy applications.

References

  1. Gibson, B. K. Liquid mirror telescopes: History. J. Roy. Astron. Soc. Can. 85, 158–171 (1991).

    ADS  Google Scholar 

  2. Manz, A., Graber, N. & Widmer, H. M. Miniaturized total chemical-analysis systems: A novel concept for chemical sensing. Sensor. Actuat. B 1, 244–248 (1990).

    Google Scholar 

  3. Harrison, D. J. et al. Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science 261, 895–897 (1993).

    ADS  Google Scholar 

  4. Pawlak, M. et al. Zeptosens' protein microarrays: A novel high performance microarray platform for low abundance protein analysis. Proteomics 2, 383–393 (2002).

    Google Scholar 

  5. Lee, H. J., Goodrich, T. T. & Corn, R. M. SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Anal. Chem. 73, 5525–5531 (2001).

    Google Scholar 

  6. Uebbing, J. J., Hengstler, S., Schroeder, D., Venkatesh, S. & Haven, R. Heat and fluid flow in an optical switch bubble. J. MEMS 15, 1528–1539 (2006).

    Google Scholar 

  7. Wang, X., Wilson, D., Muller, R., Maker, P. & Psaltis, D. Liquid-crystal blazed-grating beam deflector. Appl. Opt. 39, 6545–6555 (2000).

    ADS  Google Scholar 

  8. Mach, P. et al. Tunable microfluidic optical fiber. Appl. Phys. Lett. 80, 4294–4296 (2002).

    ADS  Google Scholar 

  9. Psaltis, D., Quake, S. R. & Yang, C. H. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).

    ADS  Google Scholar 

  10. Monat, C., Domachuk, P. & Eggleton, B. J. Integrated optofluidics: A new river of light. Nature Photon. 1, 106–114 (2007).

    ADS  Google Scholar 

  11. Erickson, D., Yang, C. H. & Psaltis, D. Optofluidics emerges from the laboratory. Photon. Spectra 42, 74–76 (2008).

    Google Scholar 

  12. Erickson, D., Rockwood, T., Emery, T., Scherer, A. & Psaltis, D. Nanofluidic tuning of photonic crystal circuits. Opt. Lett. 31, 59–61 (2006).

    ADS  Google Scholar 

  13. Karnutsch, C. et al. Temperature stabilization of optofluidic photonic crystal cavities. Appl. Phys. Lett. 94, 231114 (2009).

    ADS  Google Scholar 

  14. Grillet, C. et al. Reconfigurable photonic crystal circuits. Laser Photon. Rev. 4, 192–204 (2010).

    ADS  Google Scholar 

  15. Kuiper, S. & Hendriks, B. H. W. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1128–1130 (2004).

    ADS  Google Scholar 

  16. Mao, X. L., Waldeisen, J. R., Juluri, B. K. & Huang, T. J. Hydrodynamically tunable optofluidic cylindrical microlens. Lab Chip 7, 1303–1308 (2007).

    Google Scholar 

  17. Li, Z. Y., Zhang, Z. Y., Emery, T., Scherer, A. & Psaltis, D. Single mode optofluidic distributed feedback dye laser. Opt. Express 14, 696–701 (2006).

    ADS  Google Scholar 

  18. Dong, L., Agarwal, A. K., Beebe, D. J. & Jiang, H. R. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006).

    ADS  Google Scholar 

  19. Groisman, A. et al. Optofluidic 1 × 4 switch. Opt. Express 16, 13499–13508 (2008).

    ADS  Google Scholar 

  20. Li, Z. Y., Zhang, Z. Y., Scherer, A. & Psaltis, D. Mechanically tunable optofluidic distributed feedback dye laser. Opt. Express 14, 10494–10499 (2006).

    ADS  Google Scholar 

  21. Kim, H. et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nature Photon. 3, 534–540 (2009).

    ADS  Google Scholar 

  22. Mandal, S., Goddard, J. M. & Erickson, D. A multiplexed optofluidic biomolecular sensor for low mass detection. Lab Chip 9, 2924–2932 (2009).

    Google Scholar 

  23. Armani, A. M., Kulkarni, R. P., Fraser, S. E., Flagan, R. C. & Vahala, K. J. Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007).

    ADS  Google Scholar 

  24. Fan, X. D. et al. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 620, 8–26 (2008).

    Google Scholar 

  25. Rich, R. L. & Myszka, D. G. Survey of the year 2006 commercial optical biosensor literature. J. Mol. Recognit. 20, 300–366 (2007).

    Google Scholar 

  26. Measor, P. et al. On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides. Appl. Phys. Lett. 90, 211107 (2007).

    ADS  Google Scholar 

  27. Heng, X. et al. Optofluidic microscopy — a method for implementing a high resolution optical microscope on a chip. Lab Chip 6, 1274–1276 (2006).

    Google Scholar 

  28. Mudanyali, O. et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10, 1417–1428 (2010).

    Google Scholar 

  29. Cui, X. Q. et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl Acad. Sci. USA 105, 10670–10675 (2008).

    ADS  Google Scholar 

  30. Chiou, P. Y., Ohta, A. T. & Wu, M. C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005).

    ADS  Google Scholar 

  31. Yang, A. H. J. et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71–75 (2009).

    ADS  Google Scholar 

  32. Arnold, S. et al. Whispering gallery mode carousel — a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt. Express 17, 6230–6238 (2009).

    ADS  Google Scholar 

  33. Lei, L. et al. Optofluidic planar reactors for photocatalytic water treatment using solar energy. Biomicrofluidics 4, 043004 (2010).

    Google Scholar 

  34. Angermayr, S. A., Hellingwerf, K. J., Lindblad, P. & de Mattos, M. J. T. Energy biotechnology with cyanobacteria. Curr. Opin. Biotech. 20, 257–263 (2009).

    Google Scholar 

  35. Lehr, F. & Posten, C. Closed photo-bioreactors as tools for biofuel production. Curr. Opin. Biotech. 20, 280–285 (2009).

    Google Scholar 

  36. Miller, S. R. et al. Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc. Natl Acad. Sci. USA 102, 850–855 (2005).

    ADS  Google Scholar 

  37. Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007).

    Google Scholar 

  38. Laurinavichene, T. V., Fedorov, A. S., Ghirardi, M. L., Seibert, M. & Tsygankov, A. A. Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. Int. J. Hydrog. Energy 31, 659–667 (2006).

    Google Scholar 

  39. Atsumi, S., Higashide, W. & Liao, J. C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature Biotechnol. 27, 1177–1180 (2009).

    Google Scholar 

  40. Wijffels, R. H. & Barbosa, M. J. An Outlook on microalgal biofuels. Science 329, 796–799 (2010).

    ADS  Google Scholar 

  41. Brennan, L. & Owende, P. Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energ. Rev. 14, 557–577 (2010).

    Google Scholar 

  42. Grima, E. M., Fernandez, F. G. A., Camacho, F. G. & Chisti, Y. Photobioreactors: Light regime, mass transfer, and scaleup. J. Biotechnol. 70, 231–247 (1999).

    Google Scholar 

  43. Xu, L., Weathers, P. J., Xiong, X. R. & Liu, C. Z. Microalgal bioreactors: Challenges and opportunities. Eng. Life Sci. 9, 178–189 (2009).

    Google Scholar 

  44. Mori, K. Photoautotrophic bioreactor using visible solar rays condensed by fresnel lenses and transmitted through optical fibers. Biotechnol. Bioeng. Symp. 15, 331–344 (1985).

    Google Scholar 

  45. Mori, K. et al. Design for a bioreactor with sunlight supply and operations systems for use in the space environment. Adv. Space Res. 9, 161–168 (1989).

    ADS  Google Scholar 

  46. Ogbonna, J. C., Soejima, T. & Tanaka, H. An integrated solar and artificial light system for internal illumination of photobioreactors. J. Biotechnol. 70, 289–297 (1999).

    Google Scholar 

  47. Bayless, D. J. et al. Photosynthetic CO2 mitigation using a novel membrane-based photobioreactor. J. Env. Eng. Manag. 16, 209–215 (2006).

    Google Scholar 

  48. Chen, C. Y., Saratale, G. D., Lee, C. M., Chen, P. C. & Chang, J. S. Phototrophic hydrogen production in photobioreactors coupled with solarenergyexcited optical fibers. Int. J. Hydrog. Energy 33, 6886–6895 (2008).

    Google Scholar 

  49. Chen, C. Y., Lee, C. M. & Chang, J. S. Feasibility study on bioreactor strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3–5 using opticalfiberassisted illumination systems. Int. J. Hydrog. Energy 31, 2345–2355 (2006).

    Google Scholar 

  50. Chen, C. Y., Yeh, K. L., Lo, Y. C., Wang, H. M. & Chang, J. S. Engineering strategies for the enhanced photoH2 production using effluents of dark fermentation processes as substrate. Int. J. Hydrog. Energy 35, 13356–13364 (2010).

    Google Scholar 

  51. Chen, C. Y., Lee, C. M. & Chang, J. S. Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3–5 using optical fiber-illuminating photobioreactors. Biochem. Eng. J. 32, 33–42 (2006).

    Google Scholar 

  52. Kondo, T., Wakayama, T. & Miyake, J. Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment. Int. J. Hydrog. Energy 31, 1522–1526 (2006).

    Google Scholar 

  53. Janssen, M., Tramper, J., Mur, L. R. & Wijffels, R. H. Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol. Bioeng. 81, 193–210 (2003).

    Google Scholar 

  54. Posten, C. Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci. 9, 165–177 (2009).

    Google Scholar 

  55. Zijffers, J. W. F., Janssen, M., Tramper, J. & Wijffels, R. H. Design process of an area-efficient photobioreactor. Mar. Biotechnol. 10, 404–415 (2008).

    Google Scholar 

  56. Torkamani, S., Wani, S. N., Tang, Y. J. & Sureshkumar, R. Plasmon-enhanced microalgal growth in miniphotobioreactors. Appl. Phys. Lett. 97, 043703 (2010).

    ADS  Google Scholar 

  57. Agel, G., Nultsch, W. & Rhiel, E. Photoinhibition and its wavelength dependence in the cyanobacterium Anabaena variabilis. Arch. Microbiol. 147, 370–374 (1987).

    Google Scholar 

  58. Kalontarov, M., Mandal, S., Sinton, D. & Erickson, D . Optofluidically enabled bio-energy production in ASME Int. Mech. Eng. Conf. Exposition (2010).

    Google Scholar 

  59. Ooms, M. D., Erickson, D. & Sinton, D. Optofluidic energy: An evanescent photobioreactor in 1st EOS Conf. Optofluidics (2011).

  60. Smith, R. M. & Williams, S. B. Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proc. Natl Acad. Sci. USA 103, 8564–8569 (2006).

    ADS  Google Scholar 

  61. Jiang, Z., Xiao, T., Kuznetsov, V. L. & Edwards, P. P. Turning carbon dioxide into fuel. Phil. Trans. R. Soc. A 368, 3343–3364 (2010).

    ADS  Google Scholar 

  62. Halmann, M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275, 115–116 (1978).

    ADS  Google Scholar 

  63. Inoue, T., Fujishima, A., Konishi, S. & Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277, 637–638 (1979).

    ADS  Google Scholar 

  64. Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009).

    Google Scholar 

  65. Roy, S. C., Varghese, O. K., Paulose, M. & Grimes, C. A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4, 1259–1278 (2010).

    Google Scholar 

  66. Centi, G. & Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148, 191–205 (2009).

    Google Scholar 

  67. Bell, A. T., Gates, B. C. & Ray, D. Basic research needs: Catalysis for energy (PNNL-17214) (US Department of Energy, 2007).

  68. Yu, K. P., Yu, W. Y., Ku, M. C., Liou, Y. C. & Chien, S. H. Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation. Appl. Catal. B 84, 112–118 (2008).

    Google Scholar 

  69. Varghese, O. K., Paulose, M., LaTempa, T. J. & Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731–737 (2009).

    ADS  Google Scholar 

  70. Paulose, M. et al. Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J. Membrane Sci. 319, 199–205 (2008).

    Google Scholar 

  71. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    ADS  Google Scholar 

  72. Steinfeld, A. Solar thermochemical production of hydrogen: A review. Sol. Energy 78, 603–615 (2005).

    ADS  Google Scholar 

  73. Adleman, J. R., Boyd, D. A., Goodwin, D. G. & Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009).

    ADS  Google Scholar 

  74. Lee, M. T. et al. Hydrogen production with a solar steam-methanol reformer and colloid nanocatalyst. Int. J. Hydrog. Energy 35, 118–126 (2010).

    Google Scholar 

  75. Zimmerman, R., Morrison, G. & Rosengarten, G. A microsolar collector for hydrogen production by methanol reforming. J. Sol. Energy Eng. Trans. ASME 132 (2010).

    Google Scholar 

  76. Kalogirou, S. A. Solar thermal collectors and applications. Prog. Energy Combust. Sci. 30, 231–295 (2004).

    Google Scholar 

  77. DeWinter, F. Solar collectors, energy storage, and materials (MIT, 1990).

    Google Scholar 

  78. Ono, E. & Cuello, J. L. Design parameters of solar concentrating systems for CO2-mitigating algal photobioreactors. Energy 29, 1651–1657 (2004).

    Google Scholar 

  79. Hendriks, B. H. W., Kuiper, S., Van As, M. A. J., Renders, C. A. & Tukker, T. W. Electrowetting-based variable-focus lens for miniature systems. Opt. Rev. 12, 255–259 (2005).

    Google Scholar 

  80. Chauhan, R. S. Solar energy concentration with liquid lenses. Sol. Energy 18, 587–589 (1976).

    ADS  Google Scholar 

  81. Parkinson, B. An evaluation of various configurations for photoelectrochemical photovoltaic solar cells. Sol. Cells 6, 177–189 (1982).

    ADS  Google Scholar 

  82. Lansing, F. L. & Dorman, J. High-efficiency solar concentrator. JPL Deep Space Network Prog. Rep. 42, 99–109 (1976).

    ADS  Google Scholar 

  83. Otanicar, T. P., Phelan, P. E., Prasher, R. S., Rosengarten, G. & Taylor, R. A. Nanofluid-based direct absorption solar collector. J. Ren. Sus. Energy 2, 033102 (2010).

    Google Scholar 

  84. Tyagi, H., Phelan, P. & Prasher, R. Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. J. Sol. Energy Eng. Trans. ASME 131, 041004 (2009).

    Google Scholar 

  85. Chen, T. C. & Ho, C. D. Immediate assisted solar direct contact membrane distillation in saline water desalination. J. Membrane Sci. 358, 122–130 (2010).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with W. Song, J. Benemann and A. Kristensen. D.E. acknowledges support from the Academic Venture Fund of the Cornell Center for a Sustainable Future and the US National Science Foundation CBET division, through grant 0846489. D.S. acknowledges a visiting professorship in the Sibley School of Mechanical and Aerospace Engineering at Cornell University, and ongoing funding from NSERC and Carbon Management Canada NCE, Theme-B, Project B04.

Author information

Authors and Affiliations

Authors

Contributions

D.E., D.S. and D.P. contributed overall equally to the concepts, research and writing of this paper.

Corresponding authors

Correspondence to David Erickson, David Sinton or Demetri Psaltis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erickson, D., Sinton, D. & Psaltis, D. Optofluidics for energy applications. Nature Photon 5, 583–590 (2011). https://doi.org/10.1038/nphoton.2011.209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing