Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Femtosecond laser oscillators for high-field science

Abstract

Ultrafast laser oscillators have become ubiquitous in science and technology. For many years, however, their pulse energy has been limited to the nanojoule regime. Applications requiring more intense pulses relied on complex amplifier systems, which typically operate at low pulse repetition rates of the order of kilohertz. Recently, the pulse energy of femtosecond laser oscillators has greatly increased, such that some of these experiments can now be driven at multimegahertz repetition rates, which opens promising new avenues for many applications. We review the current state of the art of high-energy femtosecond laser oscillators, in particular mode-locked thin-disk lasers, and discuss their potential to drive high-field science experiments at multimegahertz repetition rates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Operation regimes of ultrafast-laser systems according to their typical pulse energy and repetition rate.
Figure 2: Frontiers in pulse energy from laser oscillators.
Figure 3: Overview of femtosecond oscillators with high pulse energy.
Figure 4: Semiconductor saturable absorber mirror mode-locked, diode-pumped Yb:YAG thin-disk laser generating 11.3 μJ pulse energy at a centre wavelength of 1.03 μm.
Figure 5: Calibration of the peak intensity by PEIS measurements using a 14-MHz thin-disk laser source15.

Similar content being viewed by others

References

  1. Steinmeyer, G. et al. Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics. Science 286, 1507–1512 (1999).

    Article  Google Scholar 

  2. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

    Article  ADS  Google Scholar 

  3. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

    Article  Google Scholar 

  4. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  5. Agostini, P. & DiMauro, L. F. The physics of attosecond light pulses. Rep. Prog. Phys. 67, 813–855 (2004).

    Article  ADS  Google Scholar 

  6. Liu, X., Du, D. & Mourou, G. Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quant. Electron. 33, 1706–1716 (1997).

    Article  ADS  Google Scholar 

  7. von der Linde, D., Sokolowski-Tinten, K. & Bialkowski, J. Laser-solid interactions in the femtosecond time regime. Appl. Surf. Sci. 109–110, 1–10 (1997).

    Article  ADS  Google Scholar 

  8. Chao, W., Harteneck, B. D., Liddle, A., Anderson, E. H. & Attwood, D. T. Soft-X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 1210–1213 (2005).

    Article  ADS  Google Scholar 

  9. Koralek, J. D. et al. Laser based angle-resolved photoemission, the sudden approximation, and quasiparticle-like spectral peaks in Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 96, 017005 (2006).

    Article  ADS  Google Scholar 

  10. Dewald, S. et al. Ionization of noble gases with pulses directly from a laser oscillator. Opt. Lett. 31, 2072–2074 (2006).

    Article  ADS  Google Scholar 

  11. Marchese, S. V. et al. in Conf. Lasers and Electro-Optics (Europe), Munich, Germany CF3-2-MON (2007).

    Google Scholar 

  12. Marchese, S. V. et al. Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level. Opt. Express 16, 6397–6407 (2008).

    Article  ADS  Google Scholar 

  13. Neuhaus, J. et al. Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 μJ by use of an active multipass geometry. Opt. Lett. 33, 726–728 (2008).

    Article  ADS  Google Scholar 

  14. Neuhaus, J. et al. in Proc. Ultrafast Phenomena XVI (eds P. B. Corkum et al.) (in the press).

  15. Südmeyer, T. et al. in Proc. Ultrafast Phenomena XVI (eds P. B. Corkum et al.) (in the press).

  16. Röser, F. et al. 131 W 220 fs fiber laser system. Opt. Lett. 30, 2754–2756 (2005).

    Article  ADS  Google Scholar 

  17. Röser, F. et al. 90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system. Opt. Lett. 32, 2230–2232 (2007).

    Article  ADS  Google Scholar 

  18. Shah, L., Fermann, M. E., Dawson, J. W. & Barty, C. P. J. Micromachining with a 50 W, 50 μJ, sub-picosecond fiber laser system. Opt. Express 14, 12546–12551 (2006).

    Article  ADS  Google Scholar 

  19. Limpert, J. et al. High-power rod-type photonic crystal fiber laser. Opt. Express 13, 1055–1058 (2005).

    Article  ADS  Google Scholar 

  20. Galvanauskas, A., Swan, M. C. & Liu, C.-H. in Conf. Lasers and Electro-Optics (CLEO), San Jose, USA CMB1 (2008).

    Google Scholar 

  21. Spence, D. E., Kean, P. N. & Sibbett, W. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16, 42–44 (1991).

    Article  ADS  Google Scholar 

  22. Keller, U. et al. Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: An antiresonant semiconductor Fabry–Perot saturable absorber. Opt. Lett. 17, 505–507 (1992).

    Article  ADS  Google Scholar 

  23. Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).

    Article  ADS  Google Scholar 

  24. Liu, Z. et al. High-repetition-rate, high-average-power, mode-locked Ti:sapphire laser with an intracavity continuous-wave amplification scheme. Appl. Phys. Lett. 74, 3622–3623 (1999).

    Article  ADS  Google Scholar 

  25. Kafka, J. D., Watts, M. L. & Pieterse, J.-W. J. Picosecond and femtosecond pulse generation in a regeneratively modelocked Ti:sapphire laser. IEEE J. Quant. Electron. 28, 2151–2162 (1992).

    Article  ADS  Google Scholar 

  26. Naumov, S. et al. Approaching the microjoule frontier with femtosecond laser oscillators. New J. Phys. 7, 216 (2005).

    Article  ADS  Google Scholar 

  27. Herriott, D., Kogelnik, H. & Kompfner, R. Off-axis paths in spherical mirror interferometers. Appl. Opt. 3, 523–526 (1964).

    Article  ADS  Google Scholar 

  28. Aus der Au, J. et al. 16.2 W average power from a diode-pumped femtosecond Yb:YAG thin disk laser. Opt. Lett. 25, 859–861 (2000).

    Article  ADS  Google Scholar 

  29. Giesen, A. et al. Scalable concept for diode-pumped high-power solid-state lasers. Appl. Phys. B 58, 365–372 (1994).

    Article  ADS  Google Scholar 

  30. Innerhofer, E. et al. 60 W average power in 810-fs pulses from a thin-disk Yb:YAG laser. Opt. Lett. 28, 367–369 (2003).

    Article  ADS  Google Scholar 

  31. Brunner, F. et al. Powerful red-green-blue laser source pumped with a mode-locked thin disk laser. Opt. Lett. 29, 1921–1923 (2004).

    Article  ADS  Google Scholar 

  32. Kärtner, F. X. & Keller, U. Stabilization of soliton-like pulses with a slow saturable absorber. Opt. Lett. 20, 16–18 (1995).

    Article  ADS  Google Scholar 

  33. Marchese, S. V. et al. Pulse energy scaling to 5 μJ from a femtosecond thin disk laser. Opt. Lett. 31, 2728–2730 (2006).

    Article  ADS  Google Scholar 

  34. Giesen, A. & Speiser, J. Fifteen years of work on thin-disk lasers: Results and scaling laws. IEEE J. Sel. Top. Quant. 13, 598–609 (2007).

    Article  Google Scholar 

  35. Mende, J. et al. in Solid State Lasers XVII: Technology and Devices, Proc. SPIE (eds Clarkson, W. A., Hodgson, N. & Shori, R. K.) 6871, 68710M–68711 (2008).

    Book  Google Scholar 

  36. Palmer, G., Siegel, M., Steinmann, A. & Morgner, U. Microjoule pulses from a passively mode-locked Yb:KY(WO4)2 thin-disk oscillator with cavity dumping. Opt. Lett. 32, 1593–1595 (2007).

    Article  ADS  Google Scholar 

  37. Sutter, D. H. et al. Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett. 24, 631–633 (1999).

    Article  ADS  Google Scholar 

  38. Morgner, U. et al. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett. 24, 411–413 (1999).

    Article  ADS  Google Scholar 

  39. Brunner, F. et al. 240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser. Opt. Lett. 27, 1162–1164 (2002).

    Article  ADS  Google Scholar 

  40. Peters, R., Kränkel, C., Petermann, K. & Huber, G. Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency. Opt. Express 15, 7075–7082 (2007).

    Article  ADS  Google Scholar 

  41. Griebner, U., Petrov, V., Petermann, K. & Peters, V. Passively mode-locked Yb:Lu2O3 laser. Opt. Express 12, 3125–3130 (2004).

    Article  ADS  Google Scholar 

  42. Marchese, S. V. et al. Efficient femtosecond high power Yb:Lu2O3 thin disk laser. Opt. Express 15, 16966–16971 (2007).

    Article  ADS  Google Scholar 

  43. Krankel, C. et al. Continuous-wave high power laser operation and tunability of Yb: LaSc3(BO3)4 in thin disk configuration. Appl. Phys. B 87, 217–220 (2007).

    Article  ADS  Google Scholar 

  44. Cascales, C. et al. Structural, spectroscopic, and tunable laser properties of Yb3+-doped NaGd(WO4)2 . Phys. Rev. B 74, 174114 (2006).

    Article  ADS  Google Scholar 

  45. Grischkowsky, D. & Balant, A. C. Optical pulse compression based on enhanced frequency chirping. Appl. Phys. Lett. 41, 1–3 (1982).

    Article  ADS  Google Scholar 

  46. Shank, C. V. et al. Compression of femtosecond optical pulses. Appl. Phys. Lett. 40, 761–763 (1982).

    Article  ADS  Google Scholar 

  47. Südmeyer, T. et al. Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber. Opt. Lett. 28, 1951–1953 (2003).

    Article  ADS  Google Scholar 

  48. Innerhofer, E. et al. in Advanced Solid-State Photonics, Wien, Austria TuA3 (2005).

    Google Scholar 

  49. Wong, W. S., Peng, X., McLaughlin, J. M. & Dong, L. Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers. Opt. Lett. 30, 2855–2857 (2005).

    Article  ADS  Google Scholar 

  50. Dong, L., Li, J. & Peng, X. Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 μm2. Opt. Express 14, 11512–11519 (2006).

    Article  ADS  Google Scholar 

  51. Hauri, C. P. et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl. Phys. B 79, 673–677 (2004).

    Article  ADS  Google Scholar 

  52. Helm, H. et al. Images of photoelectrons formed in intense laser fields. Phys. Rev. Lett. 70, 3221 (1993).

    Article  ADS  Google Scholar 

  53. Helm, H. & Dyer, M. J. Resonant and nonresonant multiphoton ionization of helium. Phys. Rev. A 49, 2726–2733 (1994).

    Article  ADS  Google Scholar 

  54. Schyja, V., Lang, T. & Helm, H. Channel switching in above-threshold ionization of xenon. Phys. Rev. A 57, 3692–3697 (1998).

    Article  ADS  Google Scholar 

  55. Wiehle, R. & Witzel, B. Correlation between double and nonresonant single ionization. Phys. Rev. Lett. 89, 223002 (2002).

    Article  ADS  Google Scholar 

  56. Wiehle, R., Witzel, B., Helm, H. & Cormier, E. Dynamics of strong-field above-threshold ionization of argon: Comparison between experiment and theory. Phys. Rev. A 67, 063405 (2003).

    Article  ADS  Google Scholar 

  57. Weber, T. et al. Correlated electron emission in multiphoton double ionization. Nature 405, 658–661 (2000).

    Article  ADS  Google Scholar 

  58. Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    Article  ADS  Google Scholar 

  59. Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    Article  ADS  Google Scholar 

  60. Hartl, I. et al. Cavity-enhanced similariton Yb-fiber laser frequency comb: 3×1014 W/cm2 peak intensity at 136 MHz. Opt. Lett. 32, 2870–2872 (2007).

    Article  ADS  Google Scholar 

  61. Yost, D. C., Schibli, T. R. & Ye, J. in Conf. Lasers and Electro-Optics (CLEO), San Jose, California CPDA10 (2008).

    Google Scholar 

  62. Gibson, E. A. et al. Coherent soft X-ray generation in the water window with quasi-phase matching. Science 302, 95–98 (2003).

    Article  ADS  Google Scholar 

  63. Zhou, X. B., Kapteyn, H. & Murnane, M. Positive-dispersion cavity-dumped Ti: sapphire laser oscillator and its application to white light generation. Opt. Express 14, 9750–9757 (2006).

    Article  ADS  Google Scholar 

  64. Killi, A. et al. High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator. Opt. Lett. 30, 1891–1893 (2005).

    Article  ADS  Google Scholar 

  65. Killi, A. et al. High speed electro-optical cavity dumping of mode-locked laser oscillators. Opt. Express 13, 1916–1922 (2005).

    Article  ADS  Google Scholar 

  66. Holtom, G. R. Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars. Opt. Lett. 31, 2719–2721 (2006).

    Article  ADS  Google Scholar 

  67. Cho, S. H., Bouma, B. E., Ippen, E. P. & Fujimoto, J. G. Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:Al2O3 laser with a multiple-pass cavity. Opt. Lett. 24, 417–419 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Südmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Südmeyer, T., Marchese, S., Hashimoto, S. et al. Femtosecond laser oscillators for high-field science. Nature Photon 2, 599–604 (2008). https://doi.org/10.1038/nphoton.2008.194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing