Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoscale phase engineering of thermal transport with a Josephson heat modulator

Abstract

Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect1, which manifests itself both in charge2 and energy transport3,4,5. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics4,5,6, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling7, thermal isolation8,9, radiation detection7, quantum information10,11 and thermal logic12. Here, we show the realization of the first balanced Josephson heat modulator13 designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters14, heat pumps15 and time-dependent electronic engines16,17,18,19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantum modulator structure.
Figure 2: Electrical response of the interferometer.
Figure 3: Thermal response of the Josephson heat modulator at 25 mK.
Figure 4: Behaviour of the device at different bath temperatures.

Similar content being viewed by others

References

  1. Josephson, B. D. Possible new effects in superconductive tunneling. Phys. Lett. 1, 251–253 (1962).

    Article  Google Scholar 

  2. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, 1996).

    Google Scholar 

  3. Maki, K. & Griffin, A. Entropy transport between two superconductors by electron tunneling. Phys. Rev. Lett. 15, 921–923 (1965).

    Article  CAS  Google Scholar 

  4. Giazotto, F. & Martínez-Pérez, M. J. The Josephson heat interferometer. Nature 492, 401–405 (2012).

    Article  CAS  Google Scholar 

  5. Martínez-Pérez, M. J. & Giazotto, F. A quantum diffractor for thermal flux. Nature Commun. 5, 3579 (2014).

    Article  Google Scholar 

  6. Martínez-Pérez, M. J., Solinas, P. & Giazotto, F. Coherent caloritronics in Josephson-based nanocircuits. J. Low Temp. Phys. 175, 813–837 (2014).

    Article  Google Scholar 

  7. Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: physics and applications. Rev. Mod. Phys. 78, 217–274 (2006).

    Article  CAS  Google Scholar 

  8. Martínez-Pérez, M. J., Fornieri, A. & Giazotto, F. Rectification of electronic heat current by a hybrid thermal diode. Nature Nanotechn. 10, 303–307 (2015).

    Article  Google Scholar 

  9. Fornieri, A., Martínez-Pérez, M. J. & Giazotto, F. Electronic heat current rectification in hybrid superconducting devices. AIP Adv. 5, 053301 (2015).

    Article  Google Scholar 

  10. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2002).

    Google Scholar 

  11. Spilla, S., Hassler, F. & Splettstoesser, J. Measurement and dephasing of a flux qubit due to heat currents. New J. Phys. 16, 045020 (2014).

    Article  Google Scholar 

  12. Li, N. et al. Phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012).

    Article  Google Scholar 

  13. Martínez-Pérez, M. J. & Giazotto, F. Fully balanced heat interferometer. Appl. Phys. Lett. 102, 092602 (2013).

    Article  Google Scholar 

  14. Bosisio, R. et al. A magnetic thermal switch for heat management at the nanoscale. Phys. Rev. B 91, 205420 (2015).

    Article  Google Scholar 

  15. Ren, J., Hänggi, P. & Li, B. Berry-phase-induced heat pumping and its impact on the fluctuation theorem. Phys. Rev. Lett. 104, 170601 (2010).

    Article  Google Scholar 

  16. Valenzuela, S. O. et al. Microwave-induced cooling of a superconducting qubit. Science 314, 1589–1592 (2006).

    Article  CAS  Google Scholar 

  17. Campisi, M., Pekola, J. & Fazio, R. Nonequilibrium fluctuations in quantum heat engines: theory, example, and possible solid state experiments. New J. Phys. 17, 035012 (2015).

    Article  Google Scholar 

  18. Niskanen, A. O., Nakamura, Y. & Pekola, J. Information entropic superconducting microcooler. Phys. Rev. B 76, 174523 (2007).

    Article  Google Scholar 

  19. Quan, H. T., Wang, Y. D., Liu, Y.-X., Sun, C. P. & Nori, F. Maxwell's demon assisted thermodynamic cycle in superconducting quantum circuits. Phys. Rev. Lett. 97, 180402 (2006).

    Article  CAS  Google Scholar 

  20. Guttman, G. D., Nathanson, B., Ben-Jacob, E. & Bergman, D. J. Phase-dependent thermal transport in Josephson junctions. Phys. Rev. B 55, 3849–3855 (1997).

    Article  CAS  Google Scholar 

  21. Giazotto, F. & Martínez-Pérez, M. J. Phase-controlled superconducting heat-flux quantum modulator. Appl. Phys. Lett. 101, 102601 (2012).

    Article  Google Scholar 

  22. Clarke, J. & Braginski, A. I. (eds) The SQUID Handbook (Wiley-VCH, 2004).

    Book  Google Scholar 

  23. Taskinen, L. J. & Maasilta, I. J. Improving the performance of hot-electron bolometers and solid state coolers with disordered alloys. Appl. Phys. Lett. 89, 143511 (2006).

    Article  Google Scholar 

  24. Ambegaokar, V. & Baratoff, A. Tunneling between superconductors. Phys. Rev. Lett. 10, 486–489 (1963).

    Article  Google Scholar 

  25. Wellstood, F. C., Urbina, C. & Clarke, J. Hot-electron effects in metals. Phys. Rev. B 49, 5942–5955 (1994).

    Article  CAS  Google Scholar 

  26. Pascal, L. M. A., Courtois, H. & Hekking, F. W. J. Circuit approach to photonic heat transport. Phys. Rev. B 83, 125113 (2011).

    Article  Google Scholar 

  27. Meschke, M., Guichard, W. & Pekola, J. P. Single-mode heat conduction by photons. Nature 444, 187–190 (2006).

    Article  CAS  Google Scholar 

  28. Schmidt, D. R., Schoelkopf, R. J. & Cleland, A. N. Photon-mediated thermal relaxation of electrons in nanostructures. Phys. Rev. Lett. 93, 045901 (2004).

    Article  CAS  Google Scholar 

  29. Timofeev, A. V. et al. Recombination-limited energy relaxation in a Bardeen–Cooper–Schrieffer superconductor. Phys. Rev. Lett. 102, 017003 (2009).

    Article  CAS  Google Scholar 

  30. Dynes, R. C., Narayanamurty, V. & Garno, J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509–1512 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Altimiras for contributions concerning the design of the samples, and P. Solinas for valuable discussions. The MIUR-FIRB2013–Project Coca (grant no. RBFR1379UX) and the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 615187- COMANCHE are acknowledged for partial financial support.

Author information

Authors and Affiliations

Authors

Contributions

C.B. fabricated the samples. A.F., C.B. and S.D.A. performed the measurements. A.F., C.B. and R.B. analysed the data and carried out the simulations. F.G. conceived the experiment. All authors discussed the results and their implications equally at all stages, and all authors wrote the manuscript.

Corresponding author

Correspondence to Francesco Giazotto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fornieri, A., Blanc, C., Bosisio, R. et al. Nanoscale phase engineering of thermal transport with a Josephson heat modulator. Nature Nanotech 11, 258–262 (2016). https://doi.org/10.1038/nnano.2015.281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.281

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing