Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions

Abstract

The ultrafast conversion of electrical signals to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor light-emitting diodes are limited by the spontaneous recombination rate of electron–hole pairs, and the footprint of electrically driven ultrafast lasers is too large for practical on-chip integration. A metal–insulator–metal tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunnelling time. Here, we study the conversion of electrons (localized in vertical gold–hexagonal boron nitride–gold tunnel junctions) to free-space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron–photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelling and establish a novel platform for studying the interaction of electrons with strongly localized electromagnetic fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expanded illustration of sample configuration.
Figure 2: Structural and optical properties of tunnel devices.
Figure 3: Light emission from antenna-coupled tunnelling devices.
Figure 4: Dipolar characteristics of the emitted light.
Figure 5: Finite-element calculations and device emission spectrum.
Figure 6: Frequency modulation of light emission.

Similar content being viewed by others

References

  1. Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Phot. 1, 438–483 (2009).

    Article  Google Scholar 

  2. Alù, A. & Engheta, N. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys. Rev. Lett. 101, 043901 (2008).

    Article  Google Scholar 

  3. Greffet, J.-J., Laroche, M. & Marquier, F. Impedance of a nanoantenna and a single quantum emitter. Phys. Rev. Lett. 105, 117701 (2010).

    Article  Google Scholar 

  4. Novotny, L. & van Hulst, N. F. Antennas for light. Nature Photon. 5, 83–90 (2011).

    Article  CAS  Google Scholar 

  5. Biagioni, P., Huang, J.-S. & Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75, 024402 (2012).

    Article  Google Scholar 

  6. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  CAS  Google Scholar 

  7. Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  Google Scholar 

  8. Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

    Article  CAS  Google Scholar 

  9. Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2009).

    Article  CAS  Google Scholar 

  10. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  CAS  Google Scholar 

  11. Tang, L. et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).

    Article  CAS  Google Scholar 

  12. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

    Article  CAS  Google Scholar 

  13. Huang, K. C. et al. Electrically driven subwavelength optical nanocircuits. Nature Photon. 8, 244–249 (2014).

    Article  CAS  Google Scholar 

  14. Lambe, J. & McCarthy, S. L. Light emission from inelastic electron tunneling. Phys. Rev. Lett. 37, 923 (1976).

    Article  CAS  Google Scholar 

  15. Kirtley, J., Theis, T. & Tsang, J. Light emission from tunnel junctions on gratings. Phys. Rev. B 24, 5650 (1981).

    Article  CAS  Google Scholar 

  16. Sparks, P., Sjodin, T., Reed, B. & Stege, J. Light emission from the slow mode of tunnel junctions on short period diffraction gratings. Phys. Rev. Lett. 68, 2668 (1992).

    Article  CAS  Google Scholar 

  17. Gimzewski, J. K., Reihl, B., Coombs, J. H. & Schlittler, R. R. Photon emission with the scanning tunneling microscope. Z. Phys. B 72, 497–501 (1988).

    Article  CAS  Google Scholar 

  18. Schull, G., Néel, N., Johansson, P. & Berndt, R. Electron–plasmon and electron–electron interactions at a single atom contact. Phys. Rev. Lett. 102, 057401 (2009).

    Article  Google Scholar 

  19. Chen, C., Bobisch, C. A. & Ho, W. Visualization of Fermi's Golden Rule through imaging of light emission from atomic silver chains. Science 325, 981–985 (2009).

    Article  CAS  Google Scholar 

  20. Bharadwaj, P., Bouhelier, A. & Novotny, L. Electrical excitation of surface plasmons. Phys. Rev. Lett. 106, 226802 (2011).

    Article  Google Scholar 

  21. Zhang, Y. et al. Edge scattering of surface plasmons excited by scanning tunneling microscopy. Opt. Express 21, 13938–13948 (2013).

    Article  Google Scholar 

  22. Davis, L. Theory of surface-plasmon excitation in metal–insulator–metal tunnel junctions. Phys. Rev. B 16, 2482 (1977).

    Article  Google Scholar 

  23. Rendell, R. W. & Scalapino, D. J. Surface plasmons confined by microstructures on tunnel junctions. Phys. Rev. B 24, 3276–3294 (1981).

    Article  CAS  Google Scholar 

  24. Johansson, P., Monreal, R. & Apell, P. Theory for light emission from a scanning tunneling microscope. Phys. Rev. B 42, 9210–9213 (1990).

    Article  CAS  Google Scholar 

  25. Persson, B. N. J. & Baratoff, A. Theory of photon emission in electron tunneling to metallic particles,. Phys. Rev. B 68, 3224–3227 (1992).

    CAS  Google Scholar 

  26. Aizpurua, J., Apell, S. P. & Berndt, R. Role of tip shape in light emission from the scanning tunneling microscope. Phys. Rev. B 62, 2065–2073 (2000).

    Article  CAS  Google Scholar 

  27. Landauer, R. & Martin, T. Barrier interaction time in tunneling. Rev. Mod. Phys. 66, 217 (1994).

    Article  Google Scholar 

  28. Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

    Article  CAS  Google Scholar 

  29. Ward, D. R., Hüser, F., Pauly, F., Cuevas, J. C. & Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nature Nanotech. 5, 732–736 (2010).

    Article  CAS  Google Scholar 

  30. Lee, G.-H. et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99, 243114 (2011).

    Article  Google Scholar 

  31. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    Article  CAS  Google Scholar 

  32. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Mater. 3, 404–409 (2004).

    Article  CAS  Google Scholar 

  33. Koerkamp, K. J. K., Enoch, S., Segerink, F. B., van Hulst, N. F. & Kuipers, L. Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys. Rev. Lett. 92, 183901 (2004).

    Article  Google Scholar 

  34. Garcia-Vidal, F., Moreno, E., Porto, J. & Martin-Moreno, L. Transmission of light through a single rectangular hole. Phys. Rev. Lett. 95, 103901 (2005).

    Article  CAS  Google Scholar 

  35. Gordon, R. et al. Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett. 92, 037401 (2004).

    Article  CAS  Google Scholar 

  36. Miyazaki, H. T. & Kurokawa, Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett. 96, 097401 (2006).

    Article  Google Scholar 

  37. Chen, X. et al. Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nature Commun. 4, 2361 (2013).

    Article  Google Scholar 

  38. Nagpal, P., Lindquist, N. C., Oh, S.-H. & Norris, D. J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594–597 (2009).

    Article  CAS  Google Scholar 

  39. Huang, J. et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Commun. 1, 150 (2010).

    Article  Google Scholar 

  40. Novotny, L. & Hecht, B. Principles of Nano-Optics 2nd edn (Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  41. Yang, H. U. et al. Accessing the optical magnetic near-field through Babinet's principle. ACS Photon. 1, 894–899 (2014).

    Article  CAS  Google Scholar 

  42. Schneider, N. L., Johansson, P. & Berndt, R. Hot electron cascades in the scanning tunneling microscope. Phys. Rev. B 87, 045409 (2013).

    Article  Google Scholar 

  43. Coenen, T. & Polman, A. Optical properties of single plasmonic holes probed with local electron beam excitation. ACS Nano 8, 7350–7358 (2014).

    Article  CAS  Google Scholar 

  44. Bigourdan, F., Marquier, F., Hugonin, J.-P. & Greffet, J.-J. Design of highly efficient metallo-dielectric patch antennas for single-photon emission. Opt. Express 22, 2337–2347 (2014).

    Article  CAS  Google Scholar 

  45. Akselrod, G. M. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nature Photon. 8, 835–840 (2014).

    Article  CAS  Google Scholar 

  46. Khurgin, J. B. & Sun, G. In search of the elusive lossless metal. Appl. Phys. Lett. 96, 181102 (2010).

    Article  Google Scholar 

  47. Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).

    Article  CAS  Google Scholar 

  48. Tassin, P., Koschny, T., Kafesaki, M. & Soukoulis, C. M. A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nature Photon. 6, 259–264 (2012).

    Article  CAS  Google Scholar 

  49. Geim, A. & Grigorieva, I. Van der waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  50. Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J. Cryst. Growth 303, 525–529 (2007).

    Article  CAS  Google Scholar 

  51. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  52. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451 (2005).

    Article  CAS  Google Scholar 

  53. Levinshtein, M. E., Rumyantsev, S. L. & Shur, M. S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (Wiley, 2001).

    Google Scholar 

  54. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Z.J. Lapin for sample fabrication by focused ion beam milling, K. Luszcz for support regarding the frequency modulation experiments, and M. Kasperczyk and D.W. Pohl for helpful discussions. Funding by the NCCR-QSIT programme (grant no. 51NF40-160591) and the Swiss National Science Foundation (grant no. 200021_149433) is appreciated. The authors also acknowledge the use of facilities at the FIRST Center for Micro- and Nanotechnology as well as the Scientific Center for Optical and Electron Microscopy (ScopeM) at ETH Zürich. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan. T.T. acknowledges support from a Grant-in-Aid for Scientific Research (grant no. 262480621) and on Innovative Areas ‘Nano Informatics’ (grant no. 25106006) from JSPS.

Author information

Authors and Affiliations

Authors

Contributions

L.N., P.B. and M.P. conceived the research. M.P. fabricated the samples and carried out the numerical simulations. M.P. and P.B. measured the samples. A.J. developed the transfer technique. K.W. and T.T. synthesized the h-BN crystals. M.P., P.B. and L.N. discussed the results and co-wrote the paper.

Corresponding author

Correspondence to L. Novotny.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parzefall, M., Bharadwaj, P., Jain, A. et al. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions. Nature Nanotech 10, 1058–1063 (2015). https://doi.org/10.1038/nnano.2015.203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.203

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing