Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes

Abstract

Silicon is an attractive material for anodes in energy storage devices1,2,3, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li–O2 and Li–S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anodes are structural degradation and instability of the solid-electrolyte interphase caused by the large volume change (300%) during cycling, the occurrence of side reactions with the electrolyte, and the low volumetric capacity when the material size is reduced to a nanometre scale4,5,6,7. Here, we propose a hierarchical structured silicon anode that tackles all three of these problems. Our design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation. An ensemble of these hybrid nanoparticles is then encapsulated by a thicker carbon layer in micrometre-size pouches to act as an electrolyte barrier. As a result of this hierarchical arrangement, the solid-electrolyte interphase remains stable and spatially confined, resulting in superior cyclability (97% capacity retention after 1,000 cycles). In addition, the microstructures lower the electrode–electrolyte contact area, resulting in high Coulombic efficiency (99.87%) and volumetric capacity (1,270 mAh cm−3), and the cycling remains stable even when the areal capacity is increased to the level of commercial lithium-ion batteries (3.7 mAh cm−2).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the pomegranate-inspired design.
Figure 2: Fabrication and characterization of silicon pomegranates.
Figure 3: Tuning the size of the void space of silicon pomegranates and in situ TEM characterization during lithiation.
Figure 4: Electrochemical characterization of silicon pomegranate anodes.

Similar content being viewed by others

References

  1. Armand, M. & Tarascon, J-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  2. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  3. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J-M. Li–O2 and Li–S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).

    Article  CAS  Google Scholar 

  4. Beaulieu, L. Y., Eberman, K. W., Turner, R. L., Krause, L. J. & Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4, A137–A140 (2001).

    Article  CAS  Google Scholar 

  5. Obrovac, M. N. & Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7, A93–A96 (2004).

    Article  CAS  Google Scholar 

  6. Obrovac, M. N., Christensen, L., Le, D. B. & Dahn, J. R. Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 154, A849–A855 (2007).

    Article  CAS  Google Scholar 

  7. Larcher, D. et al. Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 17, 3759–3772 (2007).

    Article  CAS  Google Scholar 

  8. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2008).

    Article  CAS  Google Scholar 

  9. Wu, H. & Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012).

    Article  CAS  Google Scholar 

  10. Park, M-H. et al. Silicon nanotube battery anodes. Nano Lett. 9, 3844–3847 (2009).

    Article  CAS  Google Scholar 

  11. Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Mater. 9, 353–358 (2010).

    Article  CAS  Google Scholar 

  12. Deshpande, R., Cheng, Y-T. & Verbrugge, M. W. Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195, 5081–5088 (2010).

    Article  CAS  Google Scholar 

  13. Liu, G. et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv. Mater. 23, 4679–4683 (2011).

    Article  CAS  Google Scholar 

  14. Lee, S. W., McDowell, M. T., Berla, L. A., Nix, W. D. & Cui, Y. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl Acad. Sci. USA 109, 4080–4085 (2012).

    Article  CAS  Google Scholar 

  15. Hwang, T. H., Lee, Y. M., Kong, B-S., Seo, J-S. & Choi, J. W. Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802–807 (2012).

    Article  CAS  Google Scholar 

  16. Yi, R., Dai, F., Gordin, M. L., Chen, S. & Wang, D. Micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 3, 295–300 (2013).

    Article  CAS  Google Scholar 

  17. Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).

    Article  CAS  Google Scholar 

  18. Chan, C. K., Ruffo, R., Hong, S. S. & Cui, Y. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 189, 1132–1140 (2009).

    Article  CAS  Google Scholar 

  19. Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).

    Article  CAS  Google Scholar 

  20. Wu, H. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotech. 7, 310–315 (2012).

    Article  CAS  Google Scholar 

  21. Liu, N. et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12, 3315–3321 (2012).

    Article  CAS  Google Scholar 

  22. Li, X. et al. Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. J. Mater. Chem. 22, 11014–11017 (2012).

    Article  CAS  Google Scholar 

  23. Chen, S. et al. Silicon core–hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. Phys. Chem. Chem. Phys. 14, 12741–12745 (2012).

    Article  CAS  Google Scholar 

  24. Park, Y. et al. Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries. Adv. Energy Mater. 3, 206–212 (2012).

    Article  Google Scholar 

  25. Wang, B. et al. Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes. Adv. Mater. 25, 3560–3565 (2013).

    Article  CAS  Google Scholar 

  26. Cho, Y-S., Yi, G-R., Kim, S-H., Pine, D. J. & Yang, S-M. Colloidal clusters of microspheres from water-in-oil emulsions. Chem. Mater. 17, 5006–5013 (2005).

    Article  CAS  Google Scholar 

  27. Yin, Y-X., Xin, S., Wan, L-J., Li, C-J. & Guo, Y-G. Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries. J. Phys. Chem. C 115, 14148–14154 (2011).

    Article  CAS  Google Scholar 

  28. Jung, D. S., Hwang, T. H., Park, S. B. & Choi, J. W. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. Nano Lett. 13, 2092–2097 (2013).

    Article  CAS  Google Scholar 

  29. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    Article  CAS  Google Scholar 

  30. McDowell, M. T. et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013).

    Article  CAS  Google Scholar 

  31. De Volder, M. F. L., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).

    Article  CAS  Google Scholar 

  32. Liu, N., Hu, L., McDowell, M. T., Jackson, A. & Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487–6493 (2011).

    Article  CAS  Google Scholar 

  33. Li, N. et al. Sol-gel coating of inorganic nanostructures with resorcinol-formaldehyde resin. Chem. Commun. 49, 5135–5137 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.C. acknowledges support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy (contract no. DE-AC02-05CH11231, subcontract no. 6951379) under the Batteries for Advanced Transportation Technologies (BATT) Program. M.T.M. acknowledges the National Science Foundation Graduate Fellowship Program and the Stanford Graduate Fellowship Program. H.W.L. acknowledges the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (contract no. 2012038593). The authors thank Z. Chen for discussions, F. Wei for providing the carbon nanotubes and Croda for providing the emulsifier.

Author information

Authors and Affiliations

Authors

Contributions

N.L., Z.L. and Y.C. conceived the concept and experiments. N.L. and Z.L. carried out the synthesis and performed materials characterization and electrochemical measurements. J.Z. participated in part of the synthesis and electrochemical measurements. M.T.M. and H.W.L. conducted in situ TEM characterization. W.Z. conducted focused ion beam experiments. N.L., Z.L. and Y.C. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 4350 kb)

Supplementary movie 1

Supplementary movie 1 (MOV 11563 kb)

Supplementary movie 2

Supplementary movie 2 (MOV 3031 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Lu, Z., Zhao, J. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotech 9, 187–192 (2014). https://doi.org/10.1038/nnano.2014.6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing