Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanotube mechanical resonators with quality factors of up to 5 million

Subjects

Abstract

Carbon nanotube mechanical resonators have attracted considerable interest because of their small mass, the high quality of their surfaces, and the pristine electronic states they host1,2,3,4. However, their small dimensions result in fragile vibrational states that are difficult to measure. Here, we observe quality factors Q as high as 5 × 106 in ultra-clean nanotube resonators at a cryostat temperature of 30 mK, where we define Q as the ratio of the resonant frequency over the linewidth. Measuring such high quality factors requires the use of an ultra-low-noise method to rapidly detect minuscule vibrations, as well as careful reduction of the noise of the electrostatic environment. We observe that the measured quality factors fluctuate because of fluctuations of the resonant frequency. We measure record-high quality factors, which are comparable to the highest Q values reported in mechanical resonators of much larger size5,6, a remarkable result considering that reducing the size of resonators is usually concomitant with decreasing quality factors. The combination of ultra-low mass and very large Q offers new opportunities for ultra-sensitive detection schemes and quantum optomechanical experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Carbon nanotube mechanical resonator.
Figure 2: Fluctuations of the Q-factor and resonant frequency.
Figure 3: Characterization of the Q-factor and of the fluctuations in f0.

Similar content being viewed by others

References

  1. Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nature Nanotech. 7, 301–304 (2012).

    Article  CAS  Google Scholar 

  2. Steele, G. A. et al. Strong coupling between single-electron tunneling and nanomechanical motion. Science 325, 1103–1107 (2009).

    Article  CAS  Google Scholar 

  3. Lassagne, B., Tarakanov, Y., Kinaret, J., Garcia-Sanchez, D. & Bachtold, A. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325, 1107–1110 (2009).

    Article  CAS  Google Scholar 

  4. Benyamini, A., Hamo, A., Viola Kusminskiy, S., von Oppen, F. & Ilani, S. Real-space tailoring of the electron–phonon coupling in ultra-clean nanotube mechanical resonators. Nature Phys. 10, 151–156 (2014).

    Article  CAS  Google Scholar 

  5. Adiga, V. P. et al. Approaching intrinsic performance in ultra-thin silicon nitride drum resonators. J. Appl. Phys. 112, 4323 (2012).

    Article  Google Scholar 

  6. Poot, M. & van der Zant, H. S. J. Mechanical systems in the quantum regime. Phys. Rep. 511, 273–335 (2012).

    Article  Google Scholar 

  7. Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotech. 2, 114–120 (2007).

    Article  CAS  Google Scholar 

  8. Mahboob, I. & Yamaguchi, H. Bit storage and bit flip operations in an electromechanical oscillator. Nature Nanotech. 3, 275–279 (2008).

    Article  CAS  Google Scholar 

  9. Aspelmeyer, M., Meystre, P. & Schwab, K. Quantum optomechanics. Phys. Today 65, 29 (July, 2012).

    Article  CAS  Google Scholar 

  10. Rieger, J., Isacsson, A., Seitner, M. J., Kotthaus, J. P. & Weig, E. M. Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching. Nature Commun. 5, 3345 (2014).

    Article  Google Scholar 

  11. Tao, Y., Boss, J. M., Moores, B. A. & Degen, C. L. Single crystal diamond nanomechanical resonators with quality factors exceeding one million. Nature Commun. 5, 3638 (2014).

    Article  CAS  Google Scholar 

  12. Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).

    Article  Google Scholar 

  13. Anetsberger, G., Rivière, R., Schliesser, A., Arcizet, O. & Kippenberg, T. J. Ultralow-dissipation optomechanical resonators on a chip. Nature Photon. 2, 627–633 (2008).

    Article  CAS  Google Scholar 

  14. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  CAS  Google Scholar 

  15. Ni, K-K. et al. Enhancement of mechanical Q factors by optical trapping. Phys. Rev. Lett. 108, 214302 (2012).

    Article  Google Scholar 

  16. Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

    Article  Google Scholar 

  17. Gröblacher, S. et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nature Phys. 5, 485–488 (2009).

    Article  Google Scholar 

  18. Villanueva, L. G. & Schmid, S. Evidence of surface loss as ubiquitous limiting damping mechanism in SiN micro- and nanomechanical resonators. Preprint at http://arxiv.org/pdf/1405.6115 (2014).

  19. Meerwaldt, H. B., Johnston, S. R., van der Zant, H. S. J. & Steele, G. A. Submicrosecond-timescale readout of carbon nanotube mechanical motion. Appl. Phys. Lett. 103, 053121 (2013).

    Article  Google Scholar 

  20. Gouttenoire, V. et al. Digital and FM demodulation of a doubly clamped single-walled carbon-nanotube oscillator: towards a nanotube cell phone. Small 6, 1060–1065 (2010).

    Article  CAS  Google Scholar 

  21. Eichler, A. et al. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nature Nanotech. 6, 339–342 (2011).

    Article  CAS  Google Scholar 

  22. Moser, J. et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nature Nanotech. 8, 493–496 (2013).

    Article  CAS  Google Scholar 

  23. Ganzhorn, M. & Wernsdorfer, W. Dynamics and dissipation induced by single-electron tunneling in carbon nanotube nanoelectromechanical systems. Phys. Rev. Lett. 108, 175502 (2012).

    Article  Google Scholar 

  24. Gavartin, E., Verlot, P & Kippenberg, T. J. Stabilization of a linear nanomechanical oscillator to its thermodynamic limit. Nature Commun. 4, 2860 (2013).

    Article  Google Scholar 

  25. Fong, K. Y., Pernice, W. H. P. & Tang, H. X. Frequency and phase noise of ultrahigh Q silicon nitride nanomechanical resonators. Phys. Rev. B 85, 161410(R) (2012).

    Article  Google Scholar 

  26. Villanueva, L. G. et al. Surpassing fundamental limits of oscillators using nonlinear resonators. Phys. Rev. Lett. 110, 177208 (2013).

    Article  CAS  Google Scholar 

  27. Dykman, M. I. & Krivoglaz, M. A. Theory of nonlinear oscillator interacting with a medium. Sov. Phys. Rev. 5, 265–441 (1984).

    Google Scholar 

  28. Eichler, A., Moser, J., Dykman, M. I. & Bachtold, A. Symmetry breaking in a mechanical resonator made from a carbon nanotube. Nature Commun. 4, 2843 (2013).

    Article  CAS  Google Scholar 

  29. Barnard, A. W., Sazonova, V., van der Zande, A. M. & McEuen, P. L. Fluctuation broadening in carbon nanotube resonators. Proc. Natl Acad. Sci. USA 109, 19093 (2012).

    Article  CAS  Google Scholar 

  30. Longenecker, J. G. et al. High-gradient nanomagnets on cantilevers for sensitive detection of nuclear magnetic resonance. ACS Nano 6, 9637–9645 (2012).

    Article  CAS  Google Scholar 

  31. Laird, E. A., Pei, F., Tang, W., Steele, G. A. & Kouwenhoven, L. P. A high quality factor carbon nanotube mechanical resonator at 39 GHz. Nano Lett. 12, 193–197 (2012).

    Article  CAS  Google Scholar 

  32. Schneider, B. H., Etaki, S., van der Zant, H. S. J. & Steele, G. A. Coupling carbon nanotube mechanics to a superconducting circuit. Sci. Rep. 2, 599 (2012).

    Article  CAS  Google Scholar 

  33. Cleland, A. N. & Roukes, M. L. Noise processes in nanomechanical resonators. J. Appl. Phys. 92, 2758–2769 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Flyvbjerg and S. Nørrelykke for discussions. The authors acknowledge support from the European Union through the ERC-carbonNEMS project (279278), a Marie Curie grant (271938) and the Graphene Flagship, MINECO and FEDER (MAT2012-31338), the Catalan government (AGAUR, SGR), and the US Army Research Office.

Author information

Authors and Affiliations

Authors

Contributions

J.M. developed the experimental set-up, carried out the measurements and analysed the data. A.E. fabricated the devices. J.G. provided support for the experimental set-up. M.I.D. and A.B. provided support for the analysis. M.I.D. wrote Supplementary Section X. J.M., M.I.D. and A.B. wrote the manuscript, with critical comments from all authors. A.B. and J.M. conceived the experiment. A.B. supervised the work.

Corresponding author

Correspondence to A. Bachtold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1690 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moser, J., Eichler, A., Güttinger, J. et al. Nanotube mechanical resonators with quality factors of up to 5 million. Nature Nanotech 9, 1007–1011 (2014). https://doi.org/10.1038/nnano.2014.234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing