Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Low-frequency 1/f noise in graphene devices

Abstract

Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Noise characteristics of graphene devices.
Figure 2: Noise reduction in graphene devices.
Figure 3: Low-frequency noise as a sensing signal.

Similar content being viewed by others

References

  1. Johnson, J. B. The Schottky effect in low frequency circuits. Phys. Rev. 26, 71–85 (1925).

    Article  CAS  Google Scholar 

  2. Flinn, I. Extent of the 1/f noise spectrum. Nature 219, 1356–1357 (1968).

    Article  Google Scholar 

  3. Voss, R. F. & Clarke, J. 1/f noise in music and speech. Nature 258, 317–318 (1975).

    Article  Google Scholar 

  4. Gilden, D. L., Thornton, T. & Mallon, M. W. 1/f noise in human cognition. Science 267, 1837–1839 (1995).

    Article  CAS  Google Scholar 

  5. Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. E. The radio-frequency single-electron transistor: A fast and ultrasensitive electrometer. Science 280, 1238–1242 (1998).

    Article  CAS  Google Scholar 

  6. Balandin, A. A. Noise and Fluctuations Control in Electronic Devices (American Scientific, 2002).

    Google Scholar 

  7. Dutta, P. & Horn, P. M. Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 53, 497–516 (1981).

    Article  CAS  Google Scholar 

  8. Balandin, A. et al. Low flicker-noise GaN/AlGaN heterostructure field-effect transistors for microwave communications. IEEE Trans. Microwave Theory Tech. 47, 1413–1417 (1999).

    Article  Google Scholar 

  9. Hooge, F. N. 1/f noise is no surface effect. Phys. Lett. A 29, 139–140 (1969).

    Article  Google Scholar 

  10. Mircea, A., Roussel, A. & Mitonneau, A. 1/f noise: Still a surface effect. Phys. Lett. A 41, 345–346 (1972).

    Article  Google Scholar 

  11. Fleetwood, G. M., Masden, J. T. & Giordano, N. 1/f noise in platinum films and ultrathin platinum wires: Evidence for a common bulk origin. Phys. Rev. Lett. 50, 450–453 (1983).

    Article  CAS  Google Scholar 

  12. Zimmerman, D. M., Scofield, J. H., Mantese, J. V. & Webb, W. W. Volume versus surface origin of 1/f noise in metals. Phys. Rev. B 34, 773–777 (1986).

    Article  CAS  Google Scholar 

  13. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  14. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 16, 652–655 (2007).

    Article  Google Scholar 

  15. Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

    Article  CAS  Google Scholar 

  16. Meric, I. et al. Channel length scaling in graphene field-effect transistors studied with pulsed current−voltage measurements. Nano Lett. 11, 1093–1097 (2011).

    Article  CAS  Google Scholar 

  17. Yang, X., Liu, G., Rostami, M., Balandin, A. A. & Mohanram, K. Graphene ambipolar multiplier phase detector. IEEE Electron. Dev. Lett. 32, 1328–1330 (2011).

    Article  CAS  Google Scholar 

  18. Pettai, R. Noise in Receiving Systems (Wiley, 1984).

    Google Scholar 

  19. Motchenbacher, C. D. & Fitchen, F. C. Low-Noise Electronic Design (Wiley, 1973).

    Google Scholar 

  20. Potyrailo, R. A., Surman, C., Nagraj, N. & Burns, A. Materials and transducers toward selective wireless gas sensing. Chem. Rev. 111, 7315–7354 (2011).

    Article  CAS  Google Scholar 

  21. Lin, Y. M. & Avouris, P. Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett. 8, 2119–2125 (2008).

    Article  CAS  Google Scholar 

  22. Chen, Z., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).

    Article  CAS  Google Scholar 

  23. Shao, Q. et al. Flicker noise in bilayer graphene transistors. IEEE Electron. Dev. Lett. 30, 288–290 (2009).

    Article  CAS  Google Scholar 

  24. Liu, G. et al. Low-frequency electronic noise in the double-gate single-layer graphene transistors. Appl. Phys. Lett. 95, 033103 (2009).

    Article  Google Scholar 

  25. Pal, A. N. & Ghosh, A. Resistance noise in electrically biased bilayer graphene. Phys. Rev. Lett. 102, 126805 (2009).

    Article  Google Scholar 

  26. Pal, A. N. & Ghosh, A. Ultralow noise field-effect transistor from multilayer graphene. Appl. Phys. Lett. 95, 082105 (2009).

    Article  Google Scholar 

  27. Imam, S. A., Sabri, S. & Szkopek, T. Low-frequency noise and hysteresis in graphene field-effect transistors on oxide. Micro Nano Lett. 5, 37–41 (2010).

    Article  CAS  Google Scholar 

  28. Xu, G. et al. Effect of spatial charge inhomogeneity on 1/f noise behavior in graphene. Nano Lett. 10, 3312–3317 (2010).

    Article  CAS  Google Scholar 

  29. Cheng, Z., Li, Q., Li, Z., Zhou, Q. & Fang, Y. Suspended graphene sensors with improved signal and reduced noise. Nano Lett. 10, 1864–1868 (2010).

    Article  CAS  Google Scholar 

  30. Heller, I. et al. Charge noise in graphene transistors. Nano Lett. 10, 1563–1567 (2010).

    Article  CAS  Google Scholar 

  31. Rumyantsev, S. L., Liu, G., Shur, M. & Balandin, A. A. Observation of the memory steps in graphene at elevated temperatures. Appl. Phys. Lett. 98, 222107 (2011).

    Article  Google Scholar 

  32. Zhang, Y., Mendez, E. E. & Du, X. Mobility-dependent low-frequency noise in graphene field-effect transistors. ACS Nano 5, 8124–8130 (2011).

    Article  CAS  Google Scholar 

  33. Lee, S. K. et al. Correlation of low frequency noise characteristics with the interfacial charge exchange reaction at graphene devices. Carbon 50, 4046–4051 (2012).

    Article  CAS  Google Scholar 

  34. Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z. & Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett. 8, 3137–3140 (2008).

    Article  CAS  Google Scholar 

  35. Grandchamp, B. et al. Characterization and modeling of graphene transistor low-frequency noise. IEEE Trans. Electron. Dev. 59, 516–519 (2012).

    Article  CAS  Google Scholar 

  36. Rumyantsev, S., Liu, G., Stillman, W., Shur, M. & Balandin, A. A. Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms. J. Phys. Condensed Matter 22, 395302 (2010).

    Article  CAS  Google Scholar 

  37. Kaverzin, A. A., Mayorov, A. S., Shytov, A. & Horsell, D. W. Impurities as a source of 1/f noise in graphene. Phys. Rev. B 85, 075435 (2012).

    Article  Google Scholar 

  38. Pal, A. N. et al. Microscopic mechanism of 1/f noise in graphene: Role of energy band dispersion. ACS Nano 5, 2075–2081 (2011).

    Article  CAS  Google Scholar 

  39. Celik-Butler, Z. & Hsiang, T. Y. Spectral dependence of noise on gate bias in n-MOSFETS. Solid-State Electron. 30, 419–423 (1987).

    Article  Google Scholar 

  40. Dmitriev, A. P., Borovitskaya, E., Levinshtein, M. E., Rumyantsev, S. L. & Shur, M. S. Low frequency noise in degenerate semiconductors. J. Appl. Phys. 90, 301–305 (2001).

    Article  CAS  Google Scholar 

  41. Rumyantsev, S. et al. Low-frequency noise in graphene field-effect transistors. Proc. 21st Int. Conf. Noise and Fluctuations (ICNF 2011) 234–237 (IEEE, 2011).

    Google Scholar 

  42. Hooge, F. N. 1/f noise. Physica 83, 14–23 (1976).

    Google Scholar 

  43. Celasco, M. et al. Comment on 1/f noise and its temperature dependence in silver and copper. Phys. Rev. B 19, 1304–1306 (1979).

    Article  CAS  Google Scholar 

  44. Liu, G., Rumyantsev, S., Shur, M. S. & Balandin, A. A. Origin of 1/f noise in graphene multilayers: Surface vs. volume. Appl. Phys. Lett. 102, 093111 (2013).

    Article  Google Scholar 

  45. Liu, G., Stillman, W., Rumyantsev, S., Shur, M. & Balandin, A. A. Low-frequency electronic noise in graphene transistors: comparison with carbon nanotubes. Int. J. High Speed Electronic Syst. 20, 161–170 (2011).

    Article  Google Scholar 

  46. Balandin, A. et al. Effect of channel doping on the low-frequency noise in GaN/AlGaN heterostructure field-effect transistors. Appl. Phys. Lett. 75, 2064–2066 (1999).

    Article  CAS  Google Scholar 

  47. Liu, G., Rumyantsev, S., Shur, M. & Balandin, A. A. Graphene thickness-graded transistors with reduced electronic noise. Appl. Phys. Lett. 100, 033103 (2012).

    Article  Google Scholar 

  48. Lee, E. J., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nature Nanotech. 3, 486–490 (2008).

    Article  CAS  Google Scholar 

  49. Hossain, Md. Z., Roumiantsev, S. L., Shur, M. & Balandin, A. A. Reduction of 1/f noise in graphene after electron-beam irradiation. Appl. Phys. Lett. 102, 153512 (2013).

    Article  Google Scholar 

  50. Simoen, E. & Claeys, C. On flicker noise in submicron silicon MOSFETs. Solid-State Electron. 43, 865–882 (1999).

    Article  CAS  Google Scholar 

  51. Xu, G. et al. Enhanced conductance fluctuation by quantum confinement effect in graphene nanoribbons. Nano Lett. 10, 4590–4594 (2010).

    Article  CAS  Google Scholar 

  52. Xu, G. et al. Low-noise submicron channel graphene nanoribbons. Appl. Phys. Lett. 97, 073107 (2010).

    Article  Google Scholar 

  53. Kozub, V. I. Low-frequency noise due to site energy fluctuations in hopping conductivity. Solid-State Commun. 97, 843–846 (1996).

    Article  CAS  Google Scholar 

  54. Shklovskii, B. I. 1/f noise in variable range hopping conduction. Phys. Rev. B 67, 045201 (2003).

    Article  Google Scholar 

  55. Xu, G., Zhang, Y., Duan, X., Balandin, A. A. & Wang, K. L. Variability effects in graphene: challenges and opportunities for device engineering and applications. Proc. IEEE 99, 1–19 (2013).

    Google Scholar 

  56. Rumyantsev, S., Liu, G., Shur, M. S., Potyrailo, R. A. & Balandin, A. A. Selective gas sensing with a single pristine graphene transistor. Nano Lett. 12, 2294–2298 (2012).

    Article  CAS  Google Scholar 

  57. Bernamont, J. Fluctuations de potential aux bornes dun conducteur metallique de faible volume parcouru par un courant. Ann. Phys. Leipzig 7, 71 (1937).

    Article  Google Scholar 

  58. McWhorter, A. L. & Kingston, R. H. Semiconductor Surface Physics (Univ. of Pennsylvania Press, 1957).

    Google Scholar 

  59. Surya, C. & Hsiang, T. Y. Theory and experiment on the 1/ noise in p-channel metal-oxide-semiconductor field-effect transistors at low drain bias. Phys. Rev. B 33, 4898–4905 (1986).

    Article  CAS  Google Scholar 

  60. Vasko, F. T. & Mitin, V. V. Generation and recombination processes via acoustic phonons in disordered graphene. Phys. Rev. B 84, 155445 (2011).

    Article  Google Scholar 

  61. DiCarlo, L., Williams, J. R., Zhang, Y., McClure, D. T. & Marcus, C. M. Shot noise in graphene. Phys. Rev. Lett. 100, 156801 (2008).

    Article  CAS  Google Scholar 

  62. Danneau, R. et al. Shot noise measurements in graphene. Solid-State Commun. 149, 1050–1055 (2009).

    Article  CAS  Google Scholar 

  63. Danneau, R. et al. Shot noise suppression and hopping conduction in graphene nanoribbons. Phys. Rev. B 82, 16105 (2010).

    Article  Google Scholar 

  64. Tworzydło, J., Trauzettel, B., Titov, M., Rycerz, A. & Beenakker, C. W. Sub-Poissonian shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006).

    Article  Google Scholar 

  65. Golub, A. & Horovitz, B. Shot noise in graphene with long-range Coulomb interaction and local Fermi distribution. Phys. Rev. B 81, 245424 (2010).

    Article  Google Scholar 

  66. Sun, N. et al. Electrical noise and transport properties of graphene. J. Low Temp. Phys. 1–10 (2013).

  67. Galperin, Yu. M., Karpov, V. G. & Kozub, V. I. Low-frequency noise in disordered systems in a wide temperature range. Sov. Phys. JETP 68, 648–653 (1989).

    Google Scholar 

  68. Galperin, Yu. M., Gurevich, V. L. & Kozub, V. I. Disorder-induced low-frequency noise in small systems: Point and tunnel contacts in the normal and superconducting state. Europhys. Lett. 10, 753–758 (1989).

    Article  Google Scholar 

  69. Dmitriev, A. P., Levinshtein, M. E. & Rumyantsev, S. L. On the Hooge relation in semiconductors and metals. J. Appl. Phys. 106, 024514 (2009).

    Article  Google Scholar 

  70. Mihaila, M. N. in Noise and Fluctuations Control Electronic Devices (ed. Balandin, A. A.) 367–385 (American Scientific, 2002).

    Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the Semiconductor Research Corporation (SRC) and Defence Advanced Research Project Agency (DARPA) through FCRP Center for Function Accelerated nanoMaterial Engineering (FAME), and by the National Science Foundation (NSF) projects CCF-1217382, EECS-1124733 and EECS-1102074. The author is indebted to S. Rumyantsev (RPI and Ioffe Institute) for critical reading of the manuscript and providing valuable suggestions. He also acknowledges insightful discussions on 1/f noise in graphene with M. Shur (RPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Balandin.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balandin, A. Low-frequency 1/f noise in graphene devices. Nature Nanotech 8, 549–555 (2013). https://doi.org/10.1038/nnano.2013.144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing