Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Valley–spin blockade and spin resonance in carbon nanotubes

Abstract

The manipulation and readout of spin qubits in quantum dots have been successfully achieved using Pauli blockade, which forbids transitions between spin–triplet and spin–singlet states1. Compared with spin qubits realized in III–V materials2,3,4,5, group IV materials such as silicon and carbon are attractive for this application because of their low decoherence rates (nuclei with zero spins)6,7. However, valley degeneracies in the electronic band structure of these materials combined with Coulomb interactions reduce the energy difference between the blocked and unblocked states8,9,10, significantly weakening the selection rules for Pauli blockade. Recent demonstrations of spin qubits in silicon devices have required strain and spatial confinement to lift the valley degeneracy7. In carbon nanotubes, Pauli blockade can be observed by lifting valley degeneracy through disorder11,12,13,14, but this makes the confinement potential difficult to control. To achieve Pauli blockade in low-disorder nanotubes, quantum dots have to be made ultrasmall8,9, which is incompatible with conventional fabrication methods. Here, we exploit the bandgap of low-disorder nanotubes to demonstrate robust Pauli blockade based on both valley and spin selection rules. We use a novel stamping technique to create a bent nanotube, in which single-electron spin resonance is detected using the blockade. Our results indicate the feasibility of valley–spin qubits in carbon nanotubes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A carbon nanotube double quantum dot fabricated by stamping.
Figure 2: Valley–spin blockade in a p–n double quantum dot.
Figure 3: Magnetospectroscopy of double quantum dot with valley–spin blockade.
Figure 4: Effect of the bend.

Similar content being viewed by others

References

  1. Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    Article  CAS  Google Scholar 

  2. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  3. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  CAS  Google Scholar 

  4. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  CAS  Google Scholar 

  5. Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    Article  CAS  Google Scholar 

  6. Bulaev, D. V., Trauzettel, B. & Loss, D. Spin–orbit interaction and anomalous spin relaxation in carbon nanotube quantum dots. Phys. Rev. B 77, 235301 (2008).

    Article  Google Scholar 

  7. Maune, B. M. et al. Coherent singlet–triplet oscillations in a silicon-based double quantum dot. Nature 481, 344–347 (2012).

    Article  CAS  Google Scholar 

  8. Wunsch, B. Few-electron physics in a nanotube quantum dot with spin–orbit coupling. Phys. Rev. B 79, 235408 (2009).

    Article  Google Scholar 

  9. Secchi, A. & Rontani, M. Coulomb versus spin–orbit interaction in few-electron carbon-nanotube quantum dots. Phys. Rev. B 80, 041404 (2009).

    Article  Google Scholar 

  10. Steele, G. A., Gotz, G. & Kouwenhoven, L. P. Tunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes. Nature Nanotech. 4, 363–367 (2009).

    Article  CAS  Google Scholar 

  11. Buitelaar, M. R. et al. Pauli spin blockade in carbon nanotube double quantum dots. Phys. Rev. B 77, 245439 (2008).

    Article  Google Scholar 

  12. Churchill, H. O. H. et al. Electron–nuclear interaction in 13C nanotube double quantum dots. Nature Phys. 5, 321–326 (2009).

    Article  CAS  Google Scholar 

  13. Churchill, H. O. H. et al. Relaxation and dephasing in a two-electron 13C nanotube double quantum dots. Phys. Rev. Lett. 102, 166802 (2009).

    Article  CAS  Google Scholar 

  14. Chorley, S. J. et al. Transport spectroscopy of an impurity spin in a carbon nanotube double quantum dot. Phys. Rev. Lett. 106, 206801 (2011).

    Article  CAS  Google Scholar 

  15. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1266 (2007).

    Article  CAS  Google Scholar 

  16. Mason, N., Biercuk, M. J. & Marcus, C. M. Local gate control of a carbon nanotube double quantum dot. Science 303, 655–658 (2004).

    Article  CAS  Google Scholar 

  17. Cao, J., Wang, Q. & Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nature Mater. 4, 745–749 (2005).

    Article  CAS  Google Scholar 

  18. Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).

    Article  CAS  Google Scholar 

  19. Wu, C. C., Liu, C. H. & Zhong, Z. One-step direct transfer of pristine single-walled carbon nanotubes for functional nanoelectronics. Nano Lett. 10, 1032–1036 (2010).

    Article  CAS  Google Scholar 

  20. Flensberg, K. & Marcus, C. Bends in nanotubes allow electric spin control and coupling. Phys. Rev. B 81, 195418 (2010).

    Article  Google Scholar 

  21. Reynoso, A. A. & Flensberg, K. Dephasing and hyperfine interaction in carbon nanotube double quantum dots: the disordered case. Phys. Rev. B 85, 195441 (2012).

    Article  Google Scholar 

  22. Nadj-Perge, S. et al. Disentangling the effects of spin–orbit and hyperfine interactions on spin blockade. Phys. Rev. B 81, 201305 (2010).

    Article  Google Scholar 

  23. Palyi, A. & Burkard, G. Spin–valley blockade in carbon nanotube double quantum dots. Phys. Rev. B 82, 155424 (2010).

    Article  Google Scholar 

  24. Weiss, S., Rashba, E. I., Kuemmeth, F., Churchill, H. O. H. & Flensberg, K. Spin–orbit effects in carbon-nanotube double quantum dots. Phys. Rev. B 82, 165427 (2010).

    Article  Google Scholar 

  25. Reynoso, A. A. & Flensberg, K. Dephasing and hyperfine interaction in carbon nanotube double quantum dots: the clean limit. Phys. Rev. B 84, 205449 (2011).

    Article  Google Scholar 

  26. Von Stecher, J., Wunsch, B., Lukin, M., Demler, E. & Rey, A. M. Double quantum dots in carbon nanotubes. Phys. Rev. B 82, 125437 (2010).

    Article  Google Scholar 

  27. Nadj-Perge, S. et al. Spectroscopy of spin–orbit quantum bits in indium antimonide nanowires. Phys. Rev. Lett. 108, 166801 (2012).

    Article  CAS  Google Scholar 

  28. Jespersen, T. S. et al. Gate-dependent orbital magnetic moments in carbon nanotubes. Phys. Rev. Lett. 107, 186802 (2011).

    Article  CAS  Google Scholar 

  29. Laird, E. A. et al. A new mechanism of electric dipole spin resonance: hyperfine coupling in quantum dots. Semicond. Sci. Technol. 24, 064004 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Z. Zhong for the initial discussions about the stamping technique, as well as S.M. Frolov, A. Beukman and J.W.G. van den Berg for valuable suggestions. This research was supported by the Dutch Organization for Fundamental Research on Matter (FOM) and the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

F.P. fabricated the devices. F.P. and E.A.L. performed the experiments. L.P.K. supervised the project. F.P., E.A.L. and L.P.K. prepared the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Leo P. Kouwenhoven.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4495 kb)

Supplementary information

Supplementary zip (ZIP 10573 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, F., Laird, E., Steele, G. et al. Valley–spin blockade and spin resonance in carbon nanotubes. Nature Nanotech 7, 630–634 (2012). https://doi.org/10.1038/nnano.2012.160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing