Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lipid multilayer gratings

Abstract

The interaction of electromagnetic waves with matter can be controlled by structuring the matter on the scale of the wavelength of light, and various photonic components have been made by structuring materials using top-down or bottom-up approaches1,2,3,4,5. Dip-pen nanolithography is a scanning-probe-based fabrication technique that can be used to deposit materials on surfaces with high resolution and, when carried out in parallel, with high throughput6,7,8. Here, we show that lyotropic optical diffraction gratings—composed of biofunctional lipid multilayers with controllable heights between 5 and 100 nm—can be fabricated by lipid dip-pen nanolithography. Multiple materials can be simultaneously written into arbitrary patterns on pre-structured surfaces to generate complex structures and devices, allowing nanostructures to be interfaced by combinations of top-down and bottom-up fabrication methods. We also show that fluid and biocompatible lipid multilayer gratings allow label-free and specific detection of lipid–protein interactions in solution. This biosensing capability takes advantage of the adhesion properties of the phospholipid superstructures and the changes in the size and shape of the grating elements that take place in response to analyte binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the technique used to fabricate lipid multilayer gratings.
Figure 2: Optical and topographical characterization of the gratings.
Figure 3: Bottom-up and top-down integration of multimaterial waveguide grating couplers.
Figure 4: Lipid nanodynamics and protein detection.

Similar content being viewed by others

References

  1. Rittenhouse, D. Explanation of an optical deception. Trans. Am. Phil. Soc. 2, 37–42 (1786).

    Article  Google Scholar 

  2. Choi, S. Y., Mamak, M., von Freymann, G., Chopra, N. & Ozin, G. A. Mesoporous Bragg stack color tunable sensors. Nano Lett. 6, 2456–2461 (2006).

    Article  CAS  Google Scholar 

  3. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. H. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997).

    Article  CAS  Google Scholar 

  4. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  CAS  Google Scholar 

  5. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  CAS  Google Scholar 

  6. Piner, R. D., Zhu, J., Xu, F., Hong, S. H. & Mirkin, C. A. ‘Dip-pen’ nanolithography. Science 283, 661–663 (1999).

    Article  CAS  Google Scholar 

  7. Ginger, D. S., Zhang, H. & Mirkin, C. A. The evolution of dip-pen nanolithography. Angew. Chem. Int. Ed. 43, 30–45 (2004).

    Article  Google Scholar 

  8. Salaita, K., Wang, Y. H. & Mirkin, C. A. Applications of dip-pen nanolithography. Nature Nanotech. 2, 145–155 (2007).

    Article  CAS  Google Scholar 

  9. Phillips, R., Ursell, T., Wiggins, P. & Sens, P. Emerging roles for lipids in shaping membrane-protein function. Nature 459, 379–385 (2009).

    Article  CAS  Google Scholar 

  10. Sackmann, E. Supported membranes: scientific and practical applications. Science 271, 43–48 (1996).

    Article  CAS  Google Scholar 

  11. Chiu, D. T. et al. Chemical transformations in individual ultrasmall biomimetic containers. Science 283, 1892–1895 (1999).

    Article  CAS  Google Scholar 

  12. Karlsson, A. et al. Molecular engineering—networks of nanotubes and containers. Nature 409, 150–152 (2001).

    Article  CAS  Google Scholar 

  13. Storm, G. & Crommelin, D. J. A. Liposomes: quo vadis? Pharm. Sci. Technol. Today 1, 19–31 (1998).

    Article  CAS  Google Scholar 

  14. Radler, J. O., Koltover, I., Salditt, T. & Safinya, C. R. Structure of DNA–cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275, 810–814 (1997).

    Article  CAS  Google Scholar 

  15. Lenhert, S., Sun, P., Wang, Y. H., Fuchs, H. & Mirkin, C. A. Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns. Small 3, 71–75 (2007).

    Article  CAS  Google Scholar 

  16. Wang, Y. H. et al. A self-correcting inking strategy for cantilever arrays addressed by an inkjet printer and used for dip-pen nanolithography. Small 4, 1666–1670 (2008).

    Article  CAS  Google Scholar 

  17. Sekula, S. et al. Multiplexed lipid dip-pen nanolithography on subcellular scales for the templating of functional proteins and cell culture. Small 4, 1785–1793 (2008).

    Article  CAS  Google Scholar 

  18. Diguet, A., Le Berre, M., Chen, Y. & Baigl, D. Preparation of phospholipid multilayer patterns of controlled size and thickness by capillary assembly on a microstructured substrate. Small 5, 1661–1666 (2009).

    Article  CAS  Google Scholar 

  19. Sanii, B. & Parikh, A. N. Patterning fluid and elastomeric surfaces using short-wavelength UV radiation and photogenerated reactive oxygen species. Annu. Rev. Phys. Chem. 59, 411–432 (2008).

    Article  CAS  Google Scholar 

  20. Tamir, T. & Peng, S. T. Analysis and design of grating couplers. Appl. Phys. 14, 235–254 (1977).

    Article  Google Scholar 

  21. Henzi, P., Rabus, D. G., Bade, K., Wallrabe, U. & Mohr, J. Low cost single mode waveguide fabrication allowing passive fiber coupling using LIGA and UV flood exposure. Proc. SPIE 5454, 64–74 (2004).

    Article  Google Scholar 

  22. Abouraddy, A. F. et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nature Mater. 6, 336–347 (2007).

    Article  CAS  Google Scholar 

  23. Bonifacio, L. D., Lotsch, B. V., Puzzo, D. P., Scotognella, F. & Ozin, G. A. Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals. Adv. Mater. 21, 1641–1646 (2009).

    Article  CAS  Google Scholar 

  24. Mendez-Vilas, A., Jodar-Reyes, A. B. & Gonzalez-Martin, M. L. Ultrasmall liquid droplets on solid surfaces: production, imaging and relevance for current wetting research. Small 5, 1366–1390 (2009).

    Article  CAS  Google Scholar 

  25. Nagle, J. F. & Tristram-Nagle, S. Structure of lipid bilayers. BBA Rev. Biomembranes 1469, 159–195 (2000).

    CAS  Google Scholar 

  26. Sanii, B. & Parikh, A. N. Surface-energy dependent spreading of lipid monolayers and bilayers. Soft Matter 3, 974–977 (2007).

    Article  CAS  Google Scholar 

  27. Nissen, J., Gritsch, S., Wiegand, G. & Radler, J. O. Wetting of phospholipid membranes on hydrophilic surfaces—concepts towards self-healing membranes. Eur. Phys. J. B 10, 335–344 (1999).

    Article  CAS  Google Scholar 

  28. Radler, J., Strey, H. & Sackmann, E. Phenomenology and kinetics of lipid bilayer spreading on hydrophilic surfaces. Langmuir 11, 4539–4548 (1995).

    Article  Google Scholar 

  29. Ulrich, A. S., Sami, M. & Watts, A. Hydration of DOPC bilayers by differential scanning calorimetry. BBA Biomembranes 1191, 225–230 (1994).

    Article  CAS  Google Scholar 

  30. Rentzhog, M. & Fogden, A. Print quality and resistance for water-based flexography on polymer-coated boards: dependence on ink formulation and substrate pretreatment. Prog. Org. Coat. 57, 183–194 (2006).

    Article  CAS  Google Scholar 

  31. Lai, Z. A., Wang, Y. L., Allbritton, N., Li, G. P. & Bachman, M. Label-free biosensor by protein grating coupler on planar optical waveguides. Opt. Lett. 33, 1735–1737 (2008).

    Article  CAS  Google Scholar 

  32. Fan, X. D. et al. Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta 620, 8–26 (2008).

    Article  CAS  Google Scholar 

  33. Morhard, F., Pipper, J., Dahint, R. & Grunze, M. Immobilization of antibodies in micropatterns for cell detection by optical diffraction. Sens. Actuat. B 70, 232–242 (2000).

    Article  CAS  Google Scholar 

  34. Kumar, A. & Whitesides, G. M. Patterned condensation figures as optical diffraction gratings. Science 263, 60–62 (1994).

    Article  CAS  Google Scholar 

  35. Zhang, M. et al. A MEMS nanoplotter with high-density parallel dip-pen manolithography probe arrays. Nanotechnology 13, 212–217 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank W. Schroeder for drawing Fig. 1, T. Heiler for Fig. 3a, and A.B. Thistle for editorial review. S.L. thanks S. Gaertner, M. Ruben and L.F. Chi for discussion. S.L. and H.F. thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, project FU 299/14-1) for financial support. S.S. and S.L. acknowledge funding from the DFG Center for Functional Nanomaterials (CFN E3.2). T.M.'s Young Investigator Group YIG 08 received financial support from the ‘Concept for the Future’ of Karlsruhe Institute of Technology within the framework of the German Excellence Initiative. C.V. and S.K. acknowledge financial support from the Karlsruhe School of Optics and Photonics.

Author information

Authors and Affiliations

Authors

Contributions

S.L. conceived the study, coordinated experiments and wrote the paper. F.B. carried out the initial DPN and characterization, and T.L. advanced the sensing experiments with contributions from S.L., S.W., M.X. and S.S. The grating coupler was developed by C.V., S.K. and T. M. T.S. and H.F. contributed significantly to the scientific discussion of the project.

Corresponding author

Correspondence to Steven Lenhert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1134 kb)

Supplementary information

Supplementary movie 1 (AVI 12881 kb)

Supplementary information

Supplementary movie 2 (AVI 10849 kb)

Supplementary information

Supplementary movie 3 (WMV 562 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenhert, S., Brinkmann, F., Laue, T. et al. Lipid multilayer gratings. Nature Nanotech 5, 275–279 (2010). https://doi.org/10.1038/nnano.2010.17

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.17

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing