Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Supported lipid bilayer/carbon nanotube hybrids

Abstract

Carbon nanotube transistors combine molecular-scale dimensions with excellent electronic properties, offering unique opportunities for chemical and biological sensing. Here, we form supported lipid bilayers over single-walled carbon nanotube transistors. We first study the physical properties of the nanotube/supported lipid bilayer structure using fluorescence techniques. Whereas lipid molecules can diffuse freely across the nanotube, a membrane-bound protein (tetanus toxin) sees the nanotube as a barrier. Moreover, the size of the barrier depends on the diameter of the nanotube—with larger nanotubes presenting bigger obstacles to diffusion. We then demonstrate detection of protein binding (streptavidin) to the supported lipid bilayer using the nanotube transistor as a charge sensor. This system can be used as a platform to examine the interactions of single molecules with carbon nanotubes and has many potential applications for the study of molecular recognition and other biological processes occurring at cell membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of the SLB/carbon nanotube (NT) hybrids.
Figure 2: Test of lipid diffusion near SWNTs.
Figure 3: Fluorescence intensity distribution around the SWNTs.
Figure 4: Driving ganglioside-bound toxins near SWNTs with flow.
Figure 5: Detection of biotin–streptavidin binding with SWNT FETs.

Similar content being viewed by others

References

  1. McEuen, P. L. Single-wall carbon nanotubes. Phys. World 13, 31–36 (June 2000).

    Article  CAS  Google Scholar 

  2. Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).

    Article  CAS  Google Scholar 

  3. Star, A., Gabriel, J. C. P., Bradley, K. & Gruner, G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3, 459–463 (2003).

    Article  CAS  Google Scholar 

  4. Besteman, K., Lee, J. O., Wiertz, F. G. M., Heering, H. A. & Dekker, C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano. Lett. 3, 727–730 (2003).

    Article  CAS  Google Scholar 

  5. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. J. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).

    Article  CAS  Google Scholar 

  6. Zhou, X. J., Park, J. Y., Huang, S. M., Liu, J. & McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).

    Article  Google Scholar 

  7. Rosenblatt, S. et al. High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2, 869–872 (2002).

    Article  CAS  Google Scholar 

  8. Brian, A. A. & McConnell, H. M. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc. Natl Acad. Sci. USA 81, 6159–6163 (1984).

    Article  CAS  Google Scholar 

  9. Sackmann, E. Supported membranes: scientific and practical applications. Science 271, 43–48 (1996).

    Article  CAS  Google Scholar 

  10. Richard, C., Balavoine, F., Schultz, P., Ebbesen, T. W. & Mioskowski, C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300, 775–778 (2003).

    Article  CAS  Google Scholar 

  11. Salafsky, J., Groves, J. T. & Boxer, S. G. Architecture and function of membrane proteins in planar supported bilayers: A study with photosynthetic reaction centers. Biochemistry 35, 14773–14781 (1996).

    Article  CAS  Google Scholar 

  12. Mossman, K. D., Campi, G., Groves, J. T. & Dustin, M. L. Altered TCR signaling from geometrically repatterned immunological synapses. Science 310, 1191–1193 (2005).

    Article  CAS  Google Scholar 

  13. Ye, J. S. et al. Self-assembly of bilayer lipid membrane at multiwalled carbon nanotubes towards the development of photo-switched functional device. Electrochem. Commun. 7, 81–86 (2005).

    Article  CAS  Google Scholar 

  14. Artyukhin, A. B. et al. Functional one-dimensional lipid bilayers on carbon nanotube templates. J. Am. Chem. Soc. 127, 7538–7542 (2005).

    Article  CAS  Google Scholar 

  15. Bradley, K., Davis, A., Gabriel, J. C. P. & Gruner, G. Integration of cell membranes and nanotube transistors. Nano Lett. 5, 841–845 (2005).

    Article  CAS  Google Scholar 

  16. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    Article  CAS  Google Scholar 

  17. Magde, D., Elson, E. L. & Webb, W. W. Fluorescence correlation spectroscopy. II. Experimental realization. Biopolymers 13, 29–61 (1974).

    Article  CAS  Google Scholar 

  18. Orth, R. N. et al. Creating biological membranes on the micron scale: Forming patterned lipid bilayers using a polymer lift-off technique. Biophys. J. 85, 3066–3073 (2003).

    Article  CAS  Google Scholar 

  19. Groves, J. T., Ulman, N. & Boxer, S. G. Micropatterning fluid lipid bilayers on solid supports. Science 275, 651–653 (1997).

    Article  CAS  Google Scholar 

  20. Ajo-Franklin, C. M., Yoshina-Ishii, C. & Boxer, S. G. Probing the structure of supported membranes and tethered oligonucleotides by fluorescence interference contrast microscopy. Langmuir 21, 4976–4983 (2005).

    Article  CAS  Google Scholar 

  21. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).

    Article  CAS  Google Scholar 

  22. Parthasarathy, R., Yu, C. H. & Groves, J. T. Curvature-modulated phase separation in lipid bilayer membranes. Langmuir 22, 5095–5099 (2006).

    Article  CAS  Google Scholar 

  23. Roux, A. et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 24, 1537–1545 (2005).

    Article  CAS  Google Scholar 

  24. van Meer, G. & Vaz, W. L. Membrane curvature sorts lipids. Stabilized lipid rafts in membrane transport. EMBO Rep. 6, 418–419 (2005).

    Article  CAS  Google Scholar 

  25. Moran-Mirabal, J. M. et al. Micrometer-sized supported lipid bilayer arrays for bacterial toxin binding studies through total internal reflection fluorescence microscopy. Biophys. J. 89, 296–305 (2005).

    Article  CAS  Google Scholar 

  26. Angstrom, J., Teneberg, S. & Karlsson, K. A. Delineation and comparison of ganglioside-binding epitopes for the toxins of Vibrio cholerae, Escherichia coli, and Clostridium tetani: evidence for overlapping epitopes. Proc. Natl Acad. Sci.USA 91, 11859–11863 (1994).

    Article  CAS  Google Scholar 

  27. Graneli, A., Yeykal, C. C., Robertson, R. B. & Greene, E. C. Long-distance lateral diffusion of human Rad51 on double-stranded DNA. Proc. Natl Acad. Sci. USA 103, 1221–1226 (2006).

    Article  CAS  Google Scholar 

  28. Pesen, D. & Hoh, J. H. Micromechanical architecture of the endothelial cell cortex. Biophys. J. 88, 670–679 (2005).

    Article  CAS  Google Scholar 

  29. Bonetta, L. Spectrin is peripheral. J. Cell. Biol. 170, 12 (2005).

    Article  Google Scholar 

  30. Tank, D. W., Wu, E. S. & Webb, W. W. Enhanced molecular diffusibility in muscle membrane blebs: release of lateral constraints. J. Cell. Biol. 92, 207–212 (1982).

    Article  CAS  Google Scholar 

  31. Kusumi, A., Ike, H., Nakada, C., Murase, K. & Fujiwara, T. Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin. Immunol. 17, 3–21 (2005).

    Article  CAS  Google Scholar 

  32. Chaiet, L. & Wolf, F. J. Properties of streptavidin biotin-binding protein produced by streptomycetes. Arch. Biochem. Biophys. 106, 1–5 (1964).

    Article  CAS  Google Scholar 

  33. Artyukhin, A. B. et al. Controlled electrostatic gating of carbon nanotube FET devices. Nano Lett. 6, 2080–2085 (2006).

    Article  CAS  Google Scholar 

  34. Groves, J. T., Wulfing, C. & Boxer, S. G. Electrical manipulation of glycan-phosphatidyl inositol-tethered proteins in planar supported bilayers. Biophys. J. 71, 2716–2723 (1996).

    Article  CAS  Google Scholar 

  35. Ng, J. M. K., Gitlin, I., Stroock, A. D. & Whitesides, G. M. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 23, 3461–3473 (2002).

    Article  CAS  Google Scholar 

  36. Larrimore, L., Nad, S., Zhou, X. J., Abruna, H. & McEuen, P. L. Probing electrostatic potentials in solution with carbon nanotube transistors. Nano Lett. 6, 1329–1333 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nanobiotechnology Center (NBTC), an STC Program of the National Science Foundation under Agreement No. ECS-9876771. J.M.M. thanks CONACyT for support through its graduate fellowship programme. Sample fabrication was performed at the Cornell Nanoscale Science & Technology Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS 03-35765).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and J.M. performed the experiments and analysed the data. All the authors discussed the results and co-wrote the manuscript.

Corresponding authors

Correspondence to Xinjian Zhou or Paul L. McEuen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1—S3 (PDF 235 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Moran-Mirabal, J., Craighead, H. et al. Supported lipid bilayer/carbon nanotube hybrids. Nature Nanotech 2, 185–190 (2007). https://doi.org/10.1038/nnano.2007.34

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.34

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing