Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of axonal and dendritic growth by the extracellular calcium-sensing receptor

Abstract

The extracellular calcium-sensing receptor (CaSR) monitors the systemic, extracellular, free ionized-calcium level ([Ca2+]o) in organs involved in systemic [Ca2+]o homeostasis. However, CaSR is also expressed in the nervous system, where its role is unknown. We found large amounts of CaSR in perinatal mouse sympathetic neurons when their axons were innervating and branching extensively in their targets. Manipulating CaSR function in these neurons by varying [Ca2+]o, using CaSR agonists and antagonists, or expressing a dominant-negative CaSR markedly affected neurite growth in vitro. Sympathetic neurons lacking CaSR had smaller neurite arbors in vitro, and sympathetic innervation density was reduced in CaSR-deficient mice in vivo. Hippocampal pyramidal neurons, which also express CaSR, had smaller dendrites when transfected with dominant-negative CaSR in postnatal organotypic cultures. Our findings reveal a crucial role for CaSR in regulating the growth of neural processes in the peripheral and central nervous systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CaSR expression in the developing SCG.
Figure 2: [Ca2+]o influences neurite growth from SCG neurons at the peak of CaSR expression.
Figure 3: Developmental time course of effects of [Ca2+]o on neurite growth from SCG neurons.
Figure 4: CaSR calcimimetic and calcilytic compounds enhance and inhibit the effects of [Ca2+]o on neurite growth from E18 SCG neurons, respectively.
Figure 5: DNCaSR and wild-type CaSR have opposing effects on neurite growth from cultured SCG neurons.
Figure 6: Deletion of Casr reduces sympathetic axon growth in vitro and in vivo.
Figure 7: DNCaSR impairs the growth of postnatal hippocampal pyramidal dendrites.

Similar content being viewed by others

References

  1. Chilton, J.K. Molecular mechanisms of axon guidance. Dev. Biol. 292, 13–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, F.Q. & Snider, W.D. Intracellular control of developmental and regenerative axon growth. Phil. Trans. R. Soc. Lond. B 361, 1575–1592 (2006).

    Article  CAS  Google Scholar 

  3. Henley, J. & Poo, M.M. Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol. 14, 320–330 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown, E.M. et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366, 575–580 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Brown, E.M. & MacLeod, R.J. Extracellular calcium sensing and extracellular calcium signaling. Physiol. Rev. 81, 239–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Yano, S., Brown, E.M. & Chattopadhyay, N. Calcium-sensing receptor in the brain. Cell Calcium 35, 257–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Glebova, N.O. & Ginty, D.D. Growth and survival signals controlling sympathetic nervous system development. Annu. Rev. Neurosci. 28, 191–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Glebova, N.O. & Ginty, D.D. Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J. Neurosci. 24, 743–751 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Levi-Montalcini, R. The nerve growth factor 35 years later. Science 237, 1154–1162 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Davies, A.M. Regulation of neuronal survival and death by extracellular signals during development. EMBO J. 22, 2537–2545 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferry, S., Traiffort, E., Stinnakre, J. & Ruat, M. Developmental and adult expression of rat calcium-sensing receptor transcripts in neurons and oligodendrocytes. Eur. J. Neurosci. 12, 872–884 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Nemeth, E.F. et al. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc. Natl. Acad. Sci. USA 95, 4040–4045 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sholl, D.A. Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat. 87, 387–406 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Brown, E.M. Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol. Rev. 71, 371–411 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Dvorak, M.M. et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc. Natl. Acad. Sci. USA 101, 5140–5145 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bai, M. et al. In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+-sensing receptor gene: normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcemia. J. Clin. Invest. 99, 88–96 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kos, C.H. et al. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J. Clin. Invest. 111, 1021–1028 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lein, P., Johnson, M., Guo, X., Rueger, D. & Higgins, D. Osteogenic protein–1 induces dendritic growth in rat sympathetic neurons. Neuron 15, 597–605 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Chattopadhyay, N. et al. Calcium-sensing receptor in the rat hippocampus: a developmental study. Brain Res. Dev. Brain Res. 100, 13–21 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Pokorny, J. & Yamamoto, T. Postnatal ontogenesis of hippocampal CA1 area in rats. I. Development of dendritic arborisation in pyramidal neurons. Brain Res. Bull. 7, 113–120 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. Gutierrez, H., Hale, V., Dolcet, X. & Davies, A. NF-κB signaling regulates the growth of neural processes in the developing peripheral and central nervous systems. Development 132, 1713–1726 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kovacs, C.S. & Kronenberg, H.M. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr. Rev. 18, 832–872 (1997).

    CAS  PubMed  Google Scholar 

  23. Jones, H.C. & Keep, R.F. Brain fluid calcium concentration and response to acute hypercalcaemia during development in the rat. J. Physiol. (Lond.) 402, 579–593 (1988).

    Article  CAS  Google Scholar 

  24. Hofer, A.M., Curci, S., Doble, M.A., Brown, E.M. & Soybel, D.I. Intercellular communication mediated by the extracellular calcium-sensing receptor. Nat. Cell Biol. 2, 392–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Hamon, B. & Heinemann, U. Effects of GABA and bicuculline on N-methyl-d-aspartate– and quisqualate–induced reductions in extracellular free calcium in area CA1 of the hippocampal slice. Exp. Brain Res. 64, 27–36 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Cole, D., Forsythe, C.R., Dooley, J.M., Grantmyre, E.B. & Salisbury, S.R. Primary neonatal hyperparathyroidism: a devastating neurodevelopmental disorder if left untreated. J. Craniofac. Genet. Dev. Biol. 10, 205–214 (1990).

    CAS  PubMed  Google Scholar 

  27. Chikatsu, N. et al. An adult patient with severe hypercalcaemia and hypocalciuria due to a novel homozygous inactivating mutation of calcium-sensing receptor. Clin. Endocrinol. 50, 537–543 (1999).

    Article  CAS  Google Scholar 

  28. Davies, A.M., Lee, K.F. & Jaenisch, R. p75-deficient trigeminal sensory neurons have an altered response to NGF but not to other neurotrophins. Neuron 11, 565–574 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Gutierrez, H. & Davies, A.M. A fast and accurate procedure for deriving the Sholl profile in quantitative studies of neuronal morphology. J. Neurosci. Methods 163, 24–30 (2007).

    Article  PubMed  Google Scholar 

  30. Riccardi, D. et al. Localization of the extracellular Ca2+/polyvalent cation-sensing protein in rat kidney. Am. J. Physiol. 274, F611–F622 (1998).

    CAS  PubMed  Google Scholar 

  31. Chang, W. et al. Coupling of calcium receptors to inositol phosphate and cyclic AMP generation in mammalian cells and Xenopus laevis oocytes and immunodetection of receptor protein by region-specific antipeptide antisera. J. Bone Miner. Res. 13, 570–580 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Barker, V., Middleton, G., Davey, F. & Davies, A.M. TNF contributes to the death of NGF-dependent neurons during development. Nat. Neurosci. 4, 1194–1198 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Oda, Y. et al. The calcium-sensing receptor and its alternatively spliced form in murine epidermal differentiation. J. Biol. Chem. 275, 1183–1190 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Shoback and W. Chang for the antibody to CaSR carboxy terminus, and NPS Pharmaceuticals for the gift of NPS R-467 and of NPS 89636. We thank G. Lloyd for use of the radiometer 125. This work was supported by grants from the Wellcome Trust and Biotechnology and Biological Sciences Research Council. T.NV. was a recipient of a studentship from the Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Contributions

T.N.V. and G.W.O. conducted the experiments on sympathetic neurons, H.G. conducted the experiments on hippocampal neurons, C.H.K. generated the CaSR mutant mice, and D.R. and A.M.D. supervised the project.

Corresponding authors

Correspondence to Daniela Riccardi or Alun M Davies.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vizard, T., O'Keeffe, G., Gutierrez, H. et al. Regulation of axonal and dendritic growth by the extracellular calcium-sensing receptor. Nat Neurosci 11, 285–291 (2008). https://doi.org/10.1038/nn2044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing