Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-resolution imaging reveals highly selective nonface clusters in the fusiform face area

A Corrigendum to this article was published on 01 January 2007

This article has been updated

Abstract

A region in ventral human cortex (fusiform face area, FFA) thought to be important for face perception responds strongly to faces and less strongly to nonface objects. This pattern of response may reflect a uniform face-selective neural population or activity averaged across populations with heterogeneous selectivity. Using high-resolution functional magnetic resonance imaging (MRI), we found that the FFA has a reliable heterogeneous structure: localized subregions within the FFA highly selective to faces are spatially interdigitated with localized subregions highly selective to different object categories. We found a preponderance of face-selective responses in the FFA, but no difference in selectivity to faces compared to nonfaces. Thus, standard fMRI of the FFA reflects averaging of heterogeneous highly selective neural populations of differing sizes, rather than higher selectivity to faces. These results suggest that visual processing in this region is not exclusive to faces. Overall, our approach provides a framework for understanding the fine-scale structure of neural representations in the human brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models for the fine-scale functional organization of the FFA.
Figure 2: SR-fMRI (3 mm × 3 mm × 3 mm) of the FFA.
Figure 3: Reliability of HR-fMRI.
Figure 4: HR-fMRI (1 mm × 1 mm × 1 mm) of the FFA.
Figure 5: HR-fMRI face-selective patches in the FFA on the inflated cortical surface.
Figure 6: PCA of the FFA.
Figure 7: Comparison between HR-fMRI and SR-fMRI of the FFA.
Figure 8: Responses of object-selective cortex along the occipito-temporal sulcus (OTS).

Change history

  • 13 December 2006

    PDF replaced

References

  1. Kanwisher, N., McDermott, J. & Chun, M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  Google Scholar 

  2. George, N. et al. Contrast polarity and face recognition in the human fusiform gyrus. Nat. Neurosci. 2, 574–580 (1999).

    Article  CAS  Google Scholar 

  3. Tong, F., Nakayama, K., Vaughan, J.T. & Kanwisher, N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998).

    Article  CAS  Google Scholar 

  4. Hasson, U., Hendler, T., Ben Bashat, D. & Malach, R. Vase or face? A neural correlate of shape-selective grouping processes in the human brain. J. Cogn. Neurosci. 13, 744–753 (2001).

    Article  CAS  Google Scholar 

  5. Grill-Spector, K., Knouf, N. & Kanwisher, N. The fusiform face area subserves face perception, not generic within-category identification. Nat. Neurosci. 7, 555–562 (2004).

    Article  CAS  Google Scholar 

  6. Kanwisher, N. Domain specificity in face perception. Nat. Neurosci. 3, 759–763 (2000).

    Article  CAS  Google Scholar 

  7. Schwarzlose, R.F., Baker, C.I. & Kanwisher, N.K. Separate face and body selectivity on the fusiform gyrus. J. Neurosci. 25, 11055–11059 (2005).

    Article  CAS  Google Scholar 

  8. Winston, J.S., Henson, R.N., Fine-Goulden, M.R. & Dolan, R.J. fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception. J. Neurophysiol. 92, 1830–1839 (2004).

    Article  CAS  Google Scholar 

  9. Spiridon, M. & Kanwisher, N. How distributed is visual category information in human occipito-temporal cortex? An fMRI study. Neuron 35, 1157–1165 (2002).

    Article  CAS  Google Scholar 

  10. Edelman, S., Grill-Spector, K., Kushnir, T. & Malach, R. Toward direct visualization of the internal shape representation space by fMRI. Psychobiology 26, 309–321 (1998).

    Google Scholar 

  11. Haxby, J.V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    Article  CAS  Google Scholar 

  12. Ishai, A., Ungerleider, L.G., Martin, A., Schouten, J.L. & Haxby, J.V. Distributed representation of objects in the human ventral visual pathway. Proc. Natl. Acad. Sci. USA 96, 9379–9384 (1999).

    Article  CAS  Google Scholar 

  13. Avidan, G., Hasson, U., Hendler, T., Zohary, E. & Malach, R. Analysis of the neuronal selectivity underlying low fMRI signals. Curr. Biol. 12, 964–972 (2002).

    Article  CAS  Google Scholar 

  14. Desimone, R., Albright, T.D., Gross, C.G. & Bruce, C. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4, 2051–2062 (1984).

    Article  CAS  Google Scholar 

  15. Tsao, D.Y., Freiwald, W.A., Tootell, R.B. & Livingstone, M.S. A cortical region consisting entirely of face-selective cells. Science 311, 670–674 (2006).

    Article  CAS  Google Scholar 

  16. Grill-Spector, K., Kourtzi, Z. & Kanwisher, N. The lateral occipital complex and its role in object recognition. Vision Res. 41, 1409–1422 (2001).

    Article  CAS  Google Scholar 

  17. Duda, R.O., Hart, P.E. & Stork, D.G. Pattern Classification (John Wiley & Sons, New York, 2001).

    Google Scholar 

  18. Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. USA 92, 8135–8139 (1995).

    Article  CAS  Google Scholar 

  19. Grill-Spector, K. The neural basis of object perception. Curr. Opin. Neurobiol. 13, 159–166 (2003).

    Article  CAS  Google Scholar 

  20. Sayres, R. & Grill-Spector, K. Object-selective cortex exhibits performance-independent repetition suppression. J. Neurophysiol. 95, 995–1007 (2006).

    Article  Google Scholar 

  21. Peelen, M.V. & Downing, P.E. Selectivity for the human body in the fusiform gyrus. J. Neurophysiol. 93, 603–608 (2005).

    Article  Google Scholar 

  22. Saleem, K.S. et al. Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 34, 685–700 (2002).

    Article  CAS  Google Scholar 

  23. Tolias, A.S. et al. Mapping cortical activity elicited with electrical microstimulation using fMRI in the macaque. Neuron 48, 901–911 (2005).

    Article  CAS  Google Scholar 

  24. Tsao, D.Y., Freiwald, W.A., Knutsen, T.A., Mandeville, J.B. & Tootell, R.B. Faces and objects in macaque cerebral cortex. Nat. Neurosci. 6, 989–995 (2003).

    Article  CAS  Google Scholar 

  25. Pinsk, M.A., DeSimone, K., Moore, T., Gross, C.G. & Kastner, S. Representations of faces and body parts in macaque temporal cortex: a functional MRI study. Proc. Natl. Acad. Sci. USA 102, 6996–7001 (2005).

    Article  CAS  Google Scholar 

  26. Gauthier, I., Tarr, M.J., Anderson, A.W., Skudlarski, P. & Gore, J.C. Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects. Nat. Neurosci. 2, 568–573 (1999).

    Article  CAS  Google Scholar 

  27. Tarr, M.J. & Gauthier, I. FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nat. Neurosci. 3, 764–769 (2000).

    Article  CAS  Google Scholar 

  28. Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. Center-periphery organization of human object areas. Nat. Neurosci. 4, 533–539 (2001).

    Article  CAS  Google Scholar 

  29. Malach, R., Levy, I. & Hasson, U. The topography of high-order human object areas. Trends Cogn. Sci. 6, 176–184 (2002).

    Article  Google Scholar 

  30. Wang, G., Tanaka, K. & Tanifuji, M. Optical imaging of functional organization in the monkey inferotemporal cortex. Science 272, 1665–1668 (1996).

    Article  CAS  Google Scholar 

  31. Grill-Spector, K. et al. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999).

    Article  CAS  Google Scholar 

  32. Tsunoda, K., Yamane, Y., Nishizaki, M. & Tanifuji, M. Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat. Neurosci. 4, 832–838 (2001).

    Article  CAS  Google Scholar 

  33. Gauthier, I. & Nelson, C.A. The development of face expertise. Curr. Opin. Neurobiol. 11, 219–224 (2001).

    Article  CAS  Google Scholar 

  34. Golby, A.J., Gabrieli, J.D., Chiao, J.Y. & Eberhardt, J.L. Differential responses in the fusiform region to same-race and other-race faces. Nat. Neurosci. 4, 845–850 (2001).

    Article  CAS  Google Scholar 

  35. Fujita, I., Tanaka, K., Ito, M. & Cheng, K. Columns for visual features of objects in monkey inferotemporal cortex. Nature 360, 343–346 (1992).

    Article  CAS  Google Scholar 

  36. Olshausen, B.A. & Field, D.J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004).

    Article  CAS  Google Scholar 

  37. Albright, T.D., Desimone, R. & Gross, C.G. Columnar organization of directionally selective cells in visual area MT of the macaque. J. Neurophysiol. 51, 16–31 (1984).

    Article  CAS  Google Scholar 

  38. DeAngelis, G.C. & Newsome, W.T. Organization of disparity-selective neurons in macaque area MT. J. Neurosci. 19, 1398–1415 (1999).

    Article  CAS  Google Scholar 

  39. Coppola, D.M., White, L.E., Fitzpatrick, D. & Purves, D. Unequal representation of cardinal and oblique contours in ferret visual cortex. Proc. Natl. Acad. Sci. USA 95, 2621–2623 (1998).

    Article  CAS  Google Scholar 

  40. Chapman, B. & Bonhoeffer, T. Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17. Proc. Natl. Acad. Sci. USA 95, 2609–2614 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank B. Wandell, Y. Spector, N. Kanwisher and C. Baker for fruitful discussions; G. Golarai, D. Remus and D. Yoon for their comments on the manuscript; B. Dougherty for his help in developing software to project ROIs across gray layers; and J. Vinberg for his help in scanning subjects. This research was funded by grants from the National Eye Institute (1 R21EY016199-0) and the Whitehall Foundation (2005-05-111-RES) to K.G.-S. R.S. was supported by the National Eye Institute (5 F31 EY015937).

Author information

Authors and Affiliations

Authors

Contributions

K.G.-S. contributed to all aspects of this experiment: design, data collection, development of data analysis methods, code development, and data analyses. R.S. contributed to the design, data collection, code and data analysis development, and data analyses. D.R. developed the surface coil used in these experiments and implemented and developed the HR-fMRI protocols used in these experiments. All authors contributed to understanding the implications of our results and to preparing the manuscript.

Note: Supplementary information is available on the Nature Neuroscience website.

Corresponding author

Correspondence to Kalanit Grill-Spector.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Examples of stimuli used in the experiment. (PDF 339 kb)

Supplementary Fig. 2

Reliability of HR-fMRI. (PDF 396 kb)

Supplementary Fig. 3

Individual subject selectivity maps on inplane slices. (PDF 378 kb)

Supplementary Fig. 4

Individual subject category selective subregions on the inflated cortical surface. (PDF 236 kb)

Supplementary Fig. 5

Decoding distributed FFA activation patterns (PDF 825 kb)

Supplementary Fig. 6

HR-FFA responses to whole and scrambled images versus fixation. (PDF 675 kb)

Supplementary Table 1

Reliability Analyses of HR-fMRI. (PDF 60 kb)

Supplementary Note (PDF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grill-Spector, K., Sayres, R. & Ress, D. High-resolution imaging reveals highly selective nonface clusters in the fusiform face area. Nat Neurosci 9, 1177–1185 (2006). https://doi.org/10.1038/nn1745

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing