Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells

Abstract

In the developing cerebral cortex, neurons are born on a predictable schedule. Here we show in mice that the essential timing mechanism is programmed within individual progenitor cells, and its expression depends solely on cell-intrinsic and environmental factors generated within the clonal lineage. Multipotent progenitor cells undergo repeated asymmetric divisions, sequentially generating neurons in their normal in vivo order: first preplate cells, including Cajal-Retzius neurons, then deep and finally superficial cortical plate neurons. As each cortical layer arises, stem cells and neuroblasts become restricted from generating earlier-born neuron types. Growth as neurospheres or in co-culture with younger cells did not restore their plasticity. Using short-hairpin RNA (shRNA) to reduce Foxg1 expression reset the timing of mid- but not late-gestation progenitors, allowing them to remake preplate neurons and then cortical-plate neurons. Our data demonstrate that neural stem cells change neuropotency during development and have a window of plasticity when restrictions can be reversed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timing of appearance of diverse cortical neurons.
Figure 2: Time-lapse lineage analysis of embryonic mouse cortical progenitor cells.
Figure 3: Cortical neuroblasts and stem cells from different embryonic stages show progressive restriction in neuropotency.
Figure 4: shRNAFoxg1 treatment of E12 cortical cells enhances neurogenesis but impairs gliogenesis.
Figure 5: E12 cortical cells divide asymmetrically and generate Reelin+ neurons after shRNAFoxg1 treatment.

Similar content being viewed by others

References

  1. Bayer, S.A. & Altman, J. Neocortical Development (Raven Press, New York, 1991).

    Google Scholar 

  2. Sulston, J.E. & Horvitz, H.R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Sulston, J.E., Schierenberg, E., White, J.G. & Thomson, J.N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Doe, C.Q. & Technau, G.M. Identification and cell lineage of individual neural precursors in the Drosophila CNS. Trends Neurosci. 16, 510–514 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. McConnell, S.K. & Kaznowski, C.E. Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Frantz, G.D. & McConnell, S.K. Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron 17, 55–61 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Desai, A.R. & McConnell, S.K. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127, 2863–2872 (2000).

    CAS  PubMed  Google Scholar 

  8. Qian, X. et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28, 69–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Ware, M.L., Tavazoie, S.F., Reid, C.B. & Walsh, C.A. Coexistence of widespread clones and large radial clones in early embryonic ferret cortex. Cereb. Cortex 9, 636–645 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Takiguchi-Hayashi, K. et al. Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J. Neurosci. 24, 2286–2295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lavdas, A.A., Grigoriou, M., Pachnis, V. & Parnavelas, J.G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bielle, F. et al. Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat. Neurosci. 8, 1002–1012 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Hanashima, C., Li, S.C., Shen, L., Lai, E. & Fishell, G. Foxg1 suppresses early cortical cell fate. Science 303, 56–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Miyata, T. et al. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131, 3133–3145 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Haubensak, W., Attardo, A., Denk, W. & Huttner, W.B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: A major site of neurogenesis. Proc. Natl. Acad. Sci. USA 101, 3196–3201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nadarajah, B., Alifragis, P., Wong, R.O. & Parnavelas, J.G. Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. Cereb. Cortex 13, 607–611 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Qian, X., Goderie, S.K., Shen, Q., Stern, J.H. & Temple, S. Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 125, 3143–3152 (1998).

    CAS  PubMed  Google Scholar 

  19. D'Arcangelo, G. et al. Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17, 23–31 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferland, R.J., Cherry, T.J., Preware, P.O., Morrisey, E.E. & Walsh, C.A. Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J. Comp. Neurol. 460, 266–279 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Koop, K.E., MacDonald, L.M. & Lobe, C.G. Transcripts of Grg4, a murine groucho-related gene, are detected in adjacent tissues to other murine neurogenic gene homologues during embryonic development. Mech. Dev. 59, 73–87 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Yao, J. et al. Combinatorial expression patterns of individual TLE proteins during cell determination and differentiation suggest non-redundant functions for mammalian homologs of Drosophila Groucho. Dev. Growth Differ. 40, 133–146 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Hevner, R.F. et al. Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev. Neurosci. 25, 139–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Nieto, M. et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II–IV of the cerebral cortex. J. Comp. Neurol. 479, 168–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Hevner, R.F., Neogi, T., Englund, C., Daza, R.A. & Fink, A. Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Brain Res. Dev. Brain Res. 141, 39–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Shen, Q., Qian, X., Capela, A. & Temple, S. Stem cells in the embryonic cerebral cortex: their role in histogenesis and patterning. J. Neurobiol. 36, 162–174 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Caviness, V.S., Jr., Takahashi, T. & Nowakowski, R.S. Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci. 18, 379–383 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Calegari, F., Haubensak, W., Haffner, C. & Huttner, W.B. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J. Neurosci. 25, 6533–6538 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Al-Kofahi, O. et al. Automated cell lineage construction: A rapid method to analyze clonal development established with murine neural progenitor cells. Cell Cycle 5, 327–335 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Polleux, F., Dehay, C. & Kennedy, H. The timetable of laminar neurogenesis contributes to the specification of cortical areas in mouse isocortex. J. Comp. Neurol. 385, 95–116 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Luskin, M.B., Pearlman, A.L. & Sanes, J.R. Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1, 635–647 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Kornack, D.R. & Rakic, P. Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 15, 311–321 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Reid, C.B., Liang, I. & Walsh, C. Systematic widespread clonal organization in cerebral cortex. Neuron 15, 299–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Morrow, T., Song, M.R. & Ghosh, A. Sequential specification of neurons and glia by developmentally regulated extracellular factors. Development 128, 3585–3594 (2001).

    CAS  PubMed  Google Scholar 

  35. Barnabe-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48, 253–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Xuan, S. et al. Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14, 1141–1152 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Muzio, L. & Mallamaci, A. Foxg1 confines Cajal-Retzius neuronogenesis and hippocampal morphogenesis to the dorsomedial pallium. J. Neurosci. 25, 4435–4441 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Isshiki, T. & Doe, C.Q. Maintaining youth in Drosophila neural progenitors. Cell Cycle 3, 296–299 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Grosskortenhaus, R., Pearson, B.J., Marusich, A. & Doe, C.Q. Regulation of temporal identity transitions in Drosophila neuroblasts. Dev. Cell 8, 193–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Reid, C.B., Tavazoie, S.F. & Walsh, C.A. Clonal dispersion and evidence for asymmetric cell division in ferret cortex. Development 124, 2441–2450 (1997).

    CAS  PubMed  Google Scholar 

  41. Shen, Q., Zhong, W., Jan, Y.N. & Temple, S. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 129, 4843–4853 (2002).

    CAS  PubMed  Google Scholar 

  42. Li, H.S. et al. Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40, 1105–1118 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Martynoga, B., Morrison, H., Price, D.J. & Mason, J.O. Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev. Biol. 283, 113–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Kruger, G.M. et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35, 657–669 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Jin, S.K. Goderie, N. Lowry, B. Lewis, B. Roysam, P. Lederman and C. Butler for technical assistance and T. Miyata, H. Tang, J. Cunningham, C. Walsh, S. Morton, S. Arber and T. Jessell for their generous donation of antibodies. This work was supported by grant number R37NS033529 from the National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Cortical stem cells grown as neurospheres show restriction in neuropotency. (PDF 1309 kb)

Supplementary Fig. 2

Reelin+ neuron production after lentiviral transduction. (PDF 66 kb)

Supplementary Fig. 3

Reduction of Olig2 expression after shRNAFoxg1 treatment. (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Q., Wang, Y., Dimos, J. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9, 743–751 (2006). https://doi.org/10.1038/nn1694

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1694

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing