Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit

Abstract

Microcircuits composed of principal neuron and interneuron dendrites have an important role in shaping the representation of sensory information in the olfactory bulb. Here we establish the physiological features governing synaptic signaling in dendrodendritic microcircuits of olfactory bulb glomeruli. We show that dendritic γ-aminobutyric acid (GABA) release from periglomerular neurons mediates inhibition of principal tufted cells, retrograde inhibition of sensory input and lateral signaling onto neighboring periglomerular cells. We find that L-type dendritic Ca2+ spikes in periglomerular cells underlie dendrodendritic transmission by depolarizing periglomerular dendrites and activating P/Q type channels that trigger GABA release. Ca2+ spikes in periglomerular cells are evoked by powerful excitatory inputs from a single principal cell, and glutamate release from the dendrites of single principal neurons activates a large ensemble of periglomerular cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiple types of GABAergic signaling in olfactory glomeruli.
Figure 2: Factors governing the time course of periglomerular signaling.
Figure 3: Ca2+ spikes mediated by dihydropyridine-sensitive channels are more effective triggers of periglomerular GABA release than fast Na+ spikes.
Figure 4: Ca2+ spikes generate more Ca2+ influx than action potentials in periglomerular dendrites.
Figure 5: Low voltage–activated dihydropyridine sensitive Ca2+ currents in periglomerular cells.
Figure 6: L-type Ca2+ channels are required for tufted cell–periglomerular cell (TC-PG) dendrodendritic inhibition but are not normally coupled to exocytosis.
Figure 7: Individual tufted cells (TCs) activate an ensemble of periglomerular (PG) cells.
Figure 8: Dendritic glutamate release from a tufted cell generates an all-or-none Ca2+ spike in synaptically coupled periglomerular neurons.

Similar content being viewed by others

References

  1. White, E.L. Synaptic organization of the mammalian olfactory glomerulus: new findings including an intraspecific variation. Brain Res. 60, 299–313 (1973).

    Article  CAS  Google Scholar 

  2. White, E.L. Synaptic organization in the olfactory glomerulus of the mouse. Brain Res. 37, 69–80 (1972).

    Article  CAS  Google Scholar 

  3. Pinching, A.J. & Powell, T.P. The neuropil of the glomeruli of the olfactory bulb. J. Cell Sci. 9, 347–377 (1971).

    CAS  PubMed  Google Scholar 

  4. Shepherd, G.M. & Greer, C.A. Olfactory bulb. in The Synaptic Organization of the Brain (ed. Shepherd, G.M.) 159–203 (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  5. Brennan, P.A. & Keverne, E.B. Neural mechanisms of mammalian olfactory learning. Prog. Neurobiol. 51, 457–481 (1997).

    Article  CAS  Google Scholar 

  6. Yokoi, M., Mori, K. & Nakanishi, S. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl Acad. Sci. USA 92, 3371–3375 (1995).

    Article  CAS  Google Scholar 

  7. Spors, H. & Grinvald, A. Spatio-temporal dynamics of odor representations in the mammalian olfactory bulb. Neuron 34, 301–315 (2002).

    Article  CAS  Google Scholar 

  8. Cang, J. & Isaacson, J.S. In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. J. Neurosci. 23, 4108–4116 (2003).

    Article  CAS  Google Scholar 

  9. Margrie, T.W. & Schaefer, A.T. Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. J. Physiol. (Lond.) 546, 363–374 (2003).

    Article  CAS  Google Scholar 

  10. Isaacson, J.S. & Strowbridge, B.W. Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron 20, 749–761 (1998).

    Article  CAS  Google Scholar 

  11. Chen, W.R., Xiong, W. & Shepherd, G.M. Analysis of relations between NMDA receptors and GABA release at olfactory bulb reciprocal synapses. Neuron 25, 625–633 (2000).

    Article  CAS  Google Scholar 

  12. Schoppa, N.E., Kinzie, J.M., Sahara, Y., Segerson, T.P. & Westbrook, G.L. Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. J. Neurosci. 18, 6790–6802 (1998).

    Article  CAS  Google Scholar 

  13. Halabisky, B., Friedman, D., Radojicic, M. & Strowbridge, B.W. Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells. J. Neurosci. 20, 5124–5134 (2000).

    Article  CAS  Google Scholar 

  14. Isaacson, J.S. Mechanisms governing dendritic γ-aminobutyric acid (GABA) release in the rat olfactory bulb. Proc. Natl Acad. Sci. USA 98, 337–342 (2001).

    CAS  PubMed  Google Scholar 

  15. Egger, V., Svoboda, K. & Mainen, Z.F. Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J. Neurosci. 23, 7551–7558 (2003).

    Article  CAS  Google Scholar 

  16. Price, J.L. & Powell, T.P. The synaptology of the granule cells of the olfactory bulb. J. Cell Sci. 7, 125–155 (1970).

    CAS  PubMed  Google Scholar 

  17. Christie, J.M., Schoppa, N.E. & Westbrook, G.L. Tufted cell dendrodendritic inhibition in the olfactory bulb is dependent on NMDA receptor activity. J. Neurophysiol. 85, 169–173 (2001).

    Article  CAS  Google Scholar 

  18. Aroniadou-Anderjaska, V., Zhou, F.M., Priest, C.A., Ennis, M. & Shipley, M.T. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABAB heteroreceptors. J. Neurophysiol. 84, 1194–1203 (2000).

    Article  CAS  Google Scholar 

  19. Murphy, G.J., Glickfeld, L.L., Balsen, Z. & Isaacson, J.S. Sensory neuron signaling to the brain: properties of transmitter release from olfactory nerve terminals. J. Neurosci. 24, 3023–3030 (2004).

    Article  CAS  Google Scholar 

  20. Smith, T.C. & Jahr, C.E. Self-inhibition of olfactory bulb neurons. Nat. Neurosci. 5, 760–766 (2002).

    Article  CAS  Google Scholar 

  21. Salin, P.A. & Prince, D.A. Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J. Neurophysiol. 75, 1573–1588 (1996).

    Article  CAS  Google Scholar 

  22. Hausser, M. & Roth, A. Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method. J. Neurosci. 17, 7606–7625 (1997).

    Article  CAS  Google Scholar 

  23. Pearce, R.A. Physiological evidence for two distinct GABAA responses in rat hippocampus. Neuron 10, 189–200 (1993).

    Article  CAS  Google Scholar 

  24. Perez-Reyes, E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol. Rev. 83, 117–161 (2003).

    Article  CAS  Google Scholar 

  25. Holderith, N.B., Shigemoto, R. & Nusser, Z. Cell type-dependent expression of HCN1 in the main olfactory bulb. Eur. J. Neurosci. 18, 344–354 (2003).

    Article  Google Scholar 

  26. Cadetti, L. & Belluzzi, O. Hyperpolarisation-activated current in glomerular cells of the rat olfactory bulb. Neuroreport 12, 3117–3120 (2001).

    Article  CAS  Google Scholar 

  27. Regehr, W., Kehoe, J.S., Ascher, P. & Armstrong, C. Synaptically triggered action potentials in dendrites. Neuron 11, 145–151 (1993).

    Article  CAS  Google Scholar 

  28. Golding, N.L. & Spruston, N. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21, 1189–1200 (1998).

    Article  CAS  Google Scholar 

  29. Kim, H.G. & Connors, B.W. Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology. J. Neurosci. 13, 5301–5311 (1993).

    Article  CAS  Google Scholar 

  30. Schwindt, P. & Crill, W. Equivalence of amplified current flowing from dendrite to soma measured by alteration of repetitive firing and by voltage clamp in layer 5 pyramidal neurons. J. Neurophysiol. 76, 3731–3739 (1996).

    Article  CAS  Google Scholar 

  31. Pennartz, C.M., de Jeu, M.T., Bos, N.P., Schaap, J. & Geurtsen, A.M. Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416, 286–290 (2002).

    Article  CAS  Google Scholar 

  32. Avery, R.B. & Johnston, D. Multiple channel types contribute to the low-voltage-activated calcium current in hippocampal CA3 pyramidal neurons. J. Neurosci. 16, 5567–5582 (1996).

    Article  CAS  Google Scholar 

  33. Magee, J.C., Avery, R.B., Christie, B.R. & Johnston, D. Dihydropyridine-sensitive, voltage-gated Ca2+ channels contribute to the resting intracellular Ca2+ concentration of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 76, 3460–3470 (1996).

    Article  CAS  Google Scholar 

  34. Power, J.M. & Sah, P. Intracellular calcium store filling by an L-type calcium current in the basolateral amygdala at subthreshold membrane potentials. J. Physiol. 562, 439–453 (2005).

    Article  CAS  Google Scholar 

  35. Salin, P.A., Lledo, P.M., Vincent, J.D. & Charpak, S. Dendritic glutamate autoreceptors modulate signal processing in rat mitral cells. J. Neurophysiol. 85, 1275–1282 (2001).

    Article  CAS  Google Scholar 

  36. Friedman, D. & Strowbridge, B.W. Functional role of NMDA autoreceptors in olfactory mitral cells. J. Neurophysiol. 84, 39–50 (2000).

    Article  CAS  Google Scholar 

  37. Isaacson, J.S. Glutamate spillover mediates excitatory transmission in the rat olfactory bulb. Neuron 23, 377–384 (1999).

    Article  CAS  Google Scholar 

  38. Macrides, F. & Chorover, S.L. Olfactory bulb units: activity correlated with inhalation cycles and odor quality. Science 175, 84–87 (1972).

    Article  CAS  Google Scholar 

  39. Hayar, A., Karnup, S., Shipley, M.T. & Ennis, M. Olfactory bulb glomeruli: external tufted cells intrinsically burst at theta frequency and are entrained by patterned olfactory input. J. Neurosci. 24, 1190–1199 (2004).

    Article  CAS  Google Scholar 

  40. Schoppa, N.E. & Westbrook, G.L. Glomerulus-specific synchronization of mitral cells in the olfactory bulb. Neuron 31, 639–651 (2001).

    Article  CAS  Google Scholar 

  41. Toida, K., Kosaka, K., Heizmann, C.W. & Kosaka, T. Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb: III. Structural features of calbindin D28K-immunoreactive neurons. J. Comp. Neurol. 392, 179–198 (1998).

    Article  CAS  Google Scholar 

  42. Kosaka, K., Toida, K., Aika, Y. & Kosaka, T. How simple is the organization of the olfactory glomerulus? The heterogeneity of so-called periglomerular cells. Neurosci. Res. 30, 101–110 (1998).

    Article  CAS  Google Scholar 

  43. Aungst, J.L. et al. Centre-surround inhibition among olfactory bulb glomeruli. Nature 426, 623–629 (2003).

    Article  CAS  Google Scholar 

  44. Stengel, W., Jainz, M. & Andreas, K. Different potencies of dihydropyridine derivatives in blocking T-type but not L-type Ca2+ channels in neuroblastoma-glioma hybrid cells. Eur. J. Pharmacol. 342, 339–345 (1998).

    Article  CAS  Google Scholar 

  45. McQuiston, A.R. & Katz, L.C. Electrophysiology of interneurons in the glomerular layer of the rat olfactory bulb. J. Neurophysiol. 86, 1899–1907 (2001).

    Article  CAS  Google Scholar 

  46. Lipscombe, D., Helton, T.D. & Xu, W. L-type calcium channels: the low down. J. Neurophysiol. 92, 2633–2641 (2004).

    Article  CAS  Google Scholar 

  47. Xu, W. & Lipscombe, D. Neuronal CaV1.3α1 L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J. Neurosci. 21, 5944–5951 (2001).

    Article  CAS  Google Scholar 

  48. Puopolo, M. & Belluzzi, O. Functional heterogeneity of periglomerular cells in the rat olfactory bulb. Eur. J. Neurosci. 10, 1073–1083 (1998).

    Article  CAS  Google Scholar 

  49. Hillman, D. et al. Localization of P-type calcium channels in the central nervous system. Proc. Natl Acad. Sci. USA 88, 7076–7080 (1991).

    Article  CAS  Google Scholar 

  50. Schoppa, N.E. & Westbrook, G.L. Regulation of synaptic timing in the olfactory bulb by an A-type potassium current. Nat. Neurosci. 2, 1106–1113 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Scanziani, P. Sah and K. Franks for helpful discussions. G.J.M. received support from an NRSA predoctoral fellowship (NIDCD; DC005679). J.S.I. received support from a McKnight Scholar Award, Klingenstein Award, Burroughs-Wellcome Career Award and the NIH (RO1 DC04682).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffry S Isaacson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

We quantified the impact of AP-evoked release from PG cells by measuring the probability that single APs evoked a response in postsynaptic neurons. (PDF 71 kb)

Supplementary Fig. 2

P/Q-type Ca2+ channels govern GABA release between periglomerular and tufted cells. (PDF 185 kb)

Supplementary Fig. 3

Kinetics of PG cell activation during DDI. (PDF 272 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, G., Darcy, D. & Isaacson, J. Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit. Nat Neurosci 8, 354–364 (2005). https://doi.org/10.1038/nn1403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1403

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing