Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Parietal activity and the perceived direction of ambiguous apparent motion

Abstract

We recorded from parietal neurons in monkeys (Macacca mulatta) trained to report the direction of an apparent motion stimulus consisting of regularly spaced columns of dots surrounded by an aperture. Displacing the dots by half their inter-column spacing produced vivid apparent motion that could be perceived in either the preferred or anti-preferred direction for each neuron. Many neurons in the lateral intraparietal area (LIP) responded more strongly on trials in which the animals reported perceiving the neurons' preferred direction, independent of the hand movement used to report their percept. This selectivity was less common in the medial superior temporal area (MST) and virtually absent in the middle temporal area (MT). Variations in activity of LIP and MST neurons just before motion onset were also predictive of the animals' subsequent perceived direction. These data suggest a hierarchy of representation in parietal cortex, whereby neuronal responses become more aligned with subjective perception in higher parietal areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visual stimulus and behavioral task.
Figure 2: Neuronal responses.
Figure 3: Responses of one LIP cell to the ambiguous (1/2 displacement) condition, separated by whether the animal reported perceiving the preferred direction or the null direction.
Figure 4: Choice probability (CP) analysis for pre-movement and movement intervals.
Figure 5: Responses of LIP neurons were modulated by perceived direction and not by report of match (lever movement left) or non-match (lever movement right).
Figure 6: Control for planned saccades.

Similar content being viewed by others

References

  1. Parker, A.J. & Newsome, W.T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Albright, T.D. Cortical processing of visual motion. Rev. Oculomot. Res. 51, 77–201 (1993).

    Google Scholar 

  3. Andersen, R.A. Neural mechanisms of visual motion perception in primates. Neuron 18, 865–872 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Newsome, W.T., Britten, K.H. & Movshon, J.A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Salzman, C.D., Murasugi, C.M., Britten, K.H. & Newsome, W.T. Microstimulation in visual area MT: effects on direction discrimination performance. J. Neurosci. 12, 2331–2355 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Britten, K.H., Newsome, W.T., Shadlen. M.N., Celebrini, S. & Movshon, J.A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Leopold, D.A. & Logothetis, N.K. Multistable phenomena: changing views in perception. Trends Cogn. Sci. 3, 254–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Logothetis, N.K. & Schall, J.D. Neuronal correlates of subjective visual perception. Science 245, 761–763 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Bradley, D.C., Chang, G.C. & Andersen, R.A. Encoding of three-dimensional structure-from-motion by primate area MT neurons. Nature 392, 14–17 (1998).

    Article  Google Scholar 

  10. Dodd, J.V., Krug, K., Cumming, B.G. & Parker, A.J. Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J. Neurosci. 21, 4809–4821 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eskandar, E.N. & Assad, J.A. Distinct nature of directional signals among parietal cortical areas during visual guidance. J. Neurophysiol. 88, 1777–1790 (2002).

    Article  PubMed  Google Scholar 

  12. Eskandar, E.N. & Assad, J.A. Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nat. Neurosci. 2, 88–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Watanabe, T. & Cole, R. Propagation of local motion correspondence. Vision Res. 35, 2853–2861 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Bair, W. & O'Keefe, L.P. The influence of fixational eye movements on the response of neurons in area MT of the macaque. Vis. Neurosci. 15, 779–786 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Barash, S., Bracewell, R.M., Fogassi, L., Gnadt, J.W. & Andersen, R.A. Saccade-related activity in the lateral intraparietal area. II. Spatial properties. J. Neurophysiol. 66, 1109–1124 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Verstraten, F.A., Cavanagh, P. & Labianca, A.T. Limits of attentive tracking reveal temporal properties of attention. Vision Res. 40, 3651–3664 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Mikami, A., Newsome, W.T. & Wurtz, R.H. Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. J. Neurophysiol. 55, 1328–1339 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Livingstone, M.S., Pack, C.C. & Born, R.T. Two-dimensional substructure of MT receptive fields. Neuron 30, 781–793 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Felleman, D.J. & Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Celebrini, S. & Newsome, W.T. Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J. Neurosci. 14, 4109–4124 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sheinberg, D.L. & Logothetis, N.K. The role of temporal cortical areas in perceptual organization. Proc. Natl. Acad. Sci. USA 94, 3408–3413 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leopold, D.A. & Logothetis, N.K. Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature 379, 549–553 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Cavanagh, P. Attention-based motion perception. Science 257, 1563–1565 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Treue, S. & Maunsell, J.H. Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J. Neurosci. 19, 7591–7602 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cook, E.P. & Maunsell, J.H. Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J. Neurosci. 22, 1994–2004 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Battelli, L. et al. Unilateral right parietal damage leads to bilateral deficit for high-level motion. Neuron 20, 985–995 (2001).

    Article  Google Scholar 

  27. Shadlen, M.N. & Newsome, W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Coe, B., Tomihara, K., Matsuzawa, M. & Hikosaka, O. Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision-making task. J. Neurosci. 22, 5081–5090 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Basso, M.A. & Wurtz, R.H. Modulation of neuronal activity in superior colliculus by changes in target probability. J. Neurosci. 18, 7519–7534 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dorris, M.C., Paré, M. & Munoz, D.P. Immediate neural plasticity shapes motor performance. J. Neurosci. 20, RC52, 1–5 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Born and C. Pack for comments on the manuscript, D. Bradley for general advice on experimental design and A. Parker for advice on eye-movement analysis. Supported by National Eye Institute EY12106 and the McKnight Endowment Fund for Neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A Assad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, Z., Elfar, J., Eskandar, E. et al. Parietal activity and the perceived direction of ambiguous apparent motion. Nat Neurosci 6, 616–623 (2003). https://doi.org/10.1038/nn1055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1055

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing