Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor

Abstract

Cardiac function is modulated by norepinephrine release from innervating sympathetic neurons. These neurons also form excitatory connections onto cardiac myocytes in culture. Here we report that brain-derived neurotrophic factor (BDNF) altered the neurotransmitter release properties of these sympathetic neuron-myocyte connections in rodent cell culture, leading to a rapid shift from excitatory to inhibitory cholinergic transmission in response to neuronal stimulation. Fifteen minutes of BDNF perfusion was sufficient to cause this shift to inhibitory transmission, indicating that BDNF promotes preferential release of acetylcholine in response to neuronal stimulation. We found that p75−/− neurons did not release acetylcholine in response to BDNF and that neurons overexpressing p75 showed increased cholinergic transmission, indicating that the actions of BDNF are mediated through the p75 neurotrophin receptor. Our findings indicate that p75 is involved in modulating the release of distinct neurotransmitter pools, resulting in a functional switch between excitatory and inhibitory neurotransmission in individual neurons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BDNF promotes cholinergic transmission in sympathetic neuron–myocyte cocultures.
Figure 2: BDNF did not alter the postsynaptic response to neurotransmitter.
Figure 3: Acute modulation of neurotransmitter release by BDNF.
Figure 4: Trk-independent effects of BDNF.
Figure 5: Overexpression of the p75 receptor induced inhibitory neurotransmission.
Figure 6: Activation of p75 signaling pathways promotes inhibitory transmission.

Similar content being viewed by others

References

  1. Kaplan, D.R. & Miller, F.D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391 (2000).

    Article  CAS  Google Scholar 

  2. Huang, E.J. & Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).

    Article  CAS  Google Scholar 

  3. McAllister, A.K., Katz, L.C. & Lo, D.C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318 (1999).

    Article  CAS  Google Scholar 

  4. Lohof, A.M., Ip, N.Y. & Poo, M. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363, 350–353 (1993).

    Article  CAS  Google Scholar 

  5. Lockhart, S.T., Turrigiano, G.G. & Birren, S.J. Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. J. Neurosci. 17, 9573–9582 (1997).

    Article  CAS  Google Scholar 

  6. Gottschalk, W., Pozzo-Miller, L.D., Figurov, A. & Lu, B. Presynaptic modulation of synaptic transmission and plasticity by brain-derived neurotrophic factor in the developing hippocampus. J. Neurosci. 18, 6830–6839 (1998).

    Article  CAS  Google Scholar 

  7. Takei, N. et al. Brain-derived neurotrophic factor increases the stimulation-evoked release of glutamate and the levels of exocytosis-associated proteins in cultured cortical neurons from embryonic rats. J. Neurochem. 68, 370–375 (1997).

    Article  CAS  Google Scholar 

  8. Martínez, A. et al. TrkB and TrkC signaling are required for maturation and synaptogenesis of hippocampal connections. J. Neurosci. 18, 7336–7350 (1998).

    Article  Google Scholar 

  9. Tyler, W.J. & Pozzo-Miller, L.D. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J. Neurosci. 21, 4249–4258 (2001).

    Article  CAS  Google Scholar 

  10. Collin, C. et al. Neurotrophins act at presynaptic terminals to activate synapses among cultured hippocampal neurons. Eur. J. Neurosci. 13, 1273–1282 (2001).

    Article  CAS  Google Scholar 

  11. Korsching, S. & Thoenen, H. Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: correlation with density of sympathetic innervation. Proc. Natl. Acad. Sci. USA 80, 3513–3516 (1983).

    Article  CAS  Google Scholar 

  12. Lockhart, S.T., Mead, J.N., Pisano, J.M., Slonimsky, J.D. & Birren, S.J. Nerve growth factor collaborates with myocyte-derived factors to promote development of presynaptic sites in cultured sympathetic neurons. J. Neurobiol. 43, 460–476 (2000).

    Article  Google Scholar 

  13. Furshpan, E.J., Landis, S.C., Matsumoto, S.G. & Potter, D.D. Synaptic functions in rat sympathetic neurons in microcultures. I. Secretion of norepinephrine and acetylcholine. J. Neurosci. 6, 1061–1079 (1986).

    Article  CAS  Google Scholar 

  14. Potter, D.D., Landis, S.C., Matsumoto, S.G. & Furshpan, E.J. Synaptic functions in rat sympathetic neurons in microcultures. II. Adrenergic/cholinergic dual status and plasticity. J. Neurosci. 6, 1080–1098 (1986).

    Article  CAS  Google Scholar 

  15. Landis, S.C. & Keefe, D. Evidence for neurotransmitter plasticity in vivo: developmental changes in properties of cholinergic sympathetic neurons. Dev. Biol. 98, 349–372 (1983).

    Article  CAS  Google Scholar 

  16. Brodski, C., Schnürch, H. & Dechant, G. Neurotrophin-3 promotes the cholinergic differentiation of sympathetic neurons. Proc. Natl. Acad. Sci. USA 97, 9683–9688 (2000).

    Article  CAS  Google Scholar 

  17. Furshpan, E.J., MacLeish, P.R., O'Lague, P.H. & Potter, D.D. Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: evidence for cholinergic, adrenergic, and dual-function neurons. Proc. Natl. Acad. Sci. USA 73, 4225–4229 (1976).

    Article  CAS  Google Scholar 

  18. Conforti, L., Tohse, N. & Sperelakis, N. Influence of sympathetic innervation on the membrane electrical properties of neonatal rat cardiomyocytes in culture. J. Dev. Physiol. 15, 237–246 (1991).

    CAS  PubMed  Google Scholar 

  19. Saadat, S., Sendtner, M. & Rohrer, H. Ciliary neurotrophic factor induces cholinergic differentiation of rat sympathetic neurons in culture. J. Cell Biol. 108, 1807–1816 (1989).

    Article  CAS  Google Scholar 

  20. Fagan, A.M. et al. TrkA, but not TrkC, receptors are essential for survival of sympathetic neurons in vivo. J. Neurosci. 16, 6208–6218 (1996).

    Article  CAS  Google Scholar 

  21. Atwal, J.K., Massie, B., Miller, F.D. & Kaplan, D.R., TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 27, 265–277 (2000).

    Article  CAS  Google Scholar 

  22. Bamji, S.X. et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol. 140, 911–923 (1998).

    Article  CAS  Google Scholar 

  23. Majdan, M. et al. Transgenic mice expressing the intracellular domain of the p75 neurotrophin receptor undergo neuronal apoptosis. J. Neurosci. 17, 6988–6998 (1997).

    Article  CAS  Google Scholar 

  24. Yan, H. & Chao, M.V. Disruption of cysteine-rich repeats of the p75 nerve growth factor receptor leads to loss of ligand binding. J. Biol. Chem. 266, 12099–12104 (1991).

    CAS  PubMed  Google Scholar 

  25. Esposito, D. et al. The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. J. Biol. Chem. 276, 32687–32695 (2001).

    Article  CAS  Google Scholar 

  26. Lee, F.-F. et al. Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69, 737–749 (1992).

    Article  CAS  Google Scholar 

  27. Dobrowsky, R.T., Werner, M.H., Castellino, A.M., Chao, M.V. & Hannun, Y.A. Activation of the sphingomyelin cycle through the low affinity neurotrophin receptor. Science 265, 1596–1599 (1994).

    Article  CAS  Google Scholar 

  28. MacPhee, I. & Barker, P.A. Extended ceramide exposure activates the TrkA receptor by increasing receptor homodimer formation. J. Neurochem. 72, 1423–1430 (1999).

    Article  CAS  Google Scholar 

  29. Verdi, J.M. et al. p75LNGFR regulates Trk signal transduction and NGF-induced neuronal differentiation in MAH cells. Neuron 12, 733–745 (1994).

    Article  CAS  Google Scholar 

  30. Hantzopoulos, P.A., Suri, C., Glass, D.J., Goldfarb, M.P. & Yancopoulos, G.D. The low affinity NGF receptor, p75, can collaborate with each of the trks to potentiate functional responses to the neurotrophins. Neuron 13, 187–201 (1994).

    Article  CAS  Google Scholar 

  31. Casaccia-Bonnefil, P., Carter, B.D., Dobrowsky, R.T. & Chao, M.V. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383, 716–719 (1996).

    Article  CAS  Google Scholar 

  32. Yoon, S.O., Casaccia-Bonnefil, P., Carter, B. & Chao, M. Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J. Neurosci. 18, 3273–3281 (1998).

    Article  CAS  Google Scholar 

  33. Lee, R., Kermani, P., Teng, K.K. & Hempstead, B.L. Regulation of cell survival by secreted proneurotrophins. Science 294, 1945–1948 (2001).

    Article  CAS  Google Scholar 

  34. Blöchl, A. & Sirrenberg, C. Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75Lntr receptors. J. Biol. Chem. 271, 21100–21107 (1996).

    Article  Google Scholar 

  35. Numakawa, T., Takei, N., Yamagishi, S., Sakai, N. & Hatanaka, H. Neurotrophin-elicited short-term glutamate release from cultured cerebellar granule neurons. Brain Res. 842, 431–438 (1999).

    Article  CAS  Google Scholar 

  36. De Potter, W.P., Partoens, P. & Strecker, S. Noradrenaline storing vesicles in sympathetic neurons and their role in neurotransmitter release: an historical overview of controversial issues. Neurochem. Res. 22, 911–919 (1997).

    Article  CAS  Google Scholar 

  37. Landis, S.C. Rat sympathetic neurons and cardiac myocytes developing in microcultures: correlation of the fine structure of endings with neurotransmitter function in single neurons. Proc. Natl. Acad. Sci. USA 73, 4220–4224 (1976).

    Article  CAS  Google Scholar 

  38. Johnson, M.I., Paik, K. & Higgins, D. Rapid changes in synaptic vesicle cytochemistry after depolarization of cultured cholinergic sympathetic neurons. J. Cell Biol. 101, 217–226. (1985).

    Article  CAS  Google Scholar 

  39. Weihe, E., Tao-Cheng, J.H., Schafer, M.K., Erickson, J.D. & Eiden, L.E. Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Proc. Natl. Acad. Sci. USA 93, 3547–3552 (1996).

    Article  CAS  Google Scholar 

  40. Sudhof, T.C. α-Latrotoxin and its receptors: neurexins and CIRL/latrophilins. Annu. Rev. Neurosci. 24, 933–962 (2001).

    Article  CAS  Google Scholar 

  41. Stoop, R. & Poo, M. Synaptic modulation by neurotrophic factors: differential and synergistic effects of brain-derived neurotrophic factor and ciliary neurotrophic factor. J. Neurosci. 16, 3256–3264 (1996).

    Article  CAS  Google Scholar 

  42. Jiang, H. et al. Nerve growth factor (NGF)-induced calcium influx and intracellular calcium mobilization in 3T3 cells expressing NGF receptors. J. Biol. Chem. 274, 26209–26216 (1999).

    Article  CAS  Google Scholar 

  43. Sloviter, R.S. et al. Basal expression and induction of glutamate decarboxylase and GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus. J. Comp. Neurol. 373, 593–618 (1996).

    Article  CAS  Google Scholar 

  44. Gonzalez-Hernandez, T., Barroso-Chinea, P., Acevedo, A., Salido, E. & Rodriguez, M. Co-localization of tyrosine hydroxylase and GAD65 mRNA in mesostriatal neurons. Eur. J. Neurosci. 13, 57–67 (2001).

    CAS  PubMed  Google Scholar 

  45. Sulzer, D. & Rayport, S. Dale's principle and glutamate co-release from ventral midbrain dopamine neurons. Amino Acids 19, 45–52 (2000).

    Article  CAS  Google Scholar 

  46. Jonas, P., Bischofberger, J. & Sandkühler, J. Co-release of two fast neurotransmitters at a central synapse. Science 281, 419–424 (1998).

    Article  CAS  Google Scholar 

  47. Sulzer, D. et al. Dopamine neurons make glutamatergic synapses in vitro. J. Neurosci. 18, 4588–4602 (1998).

    Article  CAS  Google Scholar 

  48. Walker, M.C., Ruiz, A. & Kullmann, D.M., GABAergic signaling from dentate to CA3 with a pharmacological and physiological profile typical of mossy fiber synapses. Neuron 29, 703–715 (2001).

    Article  CAS  Google Scholar 

  49. Chun, L.L.Y. & Patterson, P.H. Role of nerve growth factor in the development of rat sympathetic neurons in vitro III. Effect on acetylcholine production. J. Cell Biol. 75, 712–718 (1977).

    Article  CAS  Google Scholar 

  50. Martin, D.P., Wallace, T.L. & Johnson, E.M. Cytosine arabinoside kills postmitotic neurons in a fashion resembling trophic factor deprivation: evidence that a deoxycytidine-dependent process may be required for nerve growth factor signal transduction. J. Neurosci. 10 184–193 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Turrigiano, L. Griffith, E. Marder and P. Sengupta for critical reading of the manuscript, J. Hinterneder for helpful discussions, J. Mead and E. Nokes for technical assistance and G. Banker, M. Chao and B. Hempstead for help with reagents. This work was supported by grants from the US National Institutes of Health (R01 NS40168) and the Whitehall Foundation to S.J.B. The Pew Scholars Program in the Biomedical Sciences supported this work through a Pew Scholars Award to S.J.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Birren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, B., Slonimsky, J. & Birren, S. A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Nat Neurosci 5, 539–545 (2002). https://doi.org/10.1038/nn0602-853

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0602-853

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing