Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Memory reactivation improves visual perception

Abstract

Human perception thresholds can improve through learning. Here we report findings challenging the fundamental 'practice makes perfect' basis of procedural learning theory, showing that brief reactivations of encoded visual memories are sufficient to improve perceptual discrimination thresholds. Learning was comparable to standard practice-induced learning and was not due to short training per se, nor to an epiphenomenon of primed retrieval enhancement. The results demonstrate that basic perceptual functions can be substantially improved by memory reactivation, supporting a new account of perceptual learning dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Improved discrimination thresholds following procedural memory reactivation.
Figure 2: Long-term retention.
Figure 3: Improvements not explained by primed enhanced retrieval or short training per se.

Similar content being viewed by others

References

  1. Karni, A. & Sagi, D. Nature 365, 250–252 (1993).

    Article  CAS  Google Scholar 

  2. Censor, N., Sagi, D. & Cohen, L.G. Nat. Rev. Neurosci. 13, 658–664 (2012).

    Article  CAS  Google Scholar 

  3. Zhou, X. & Merzenich, M.M. Proc. Natl. Acad. Sci. USA 104, 15935–15940 (2007).

    Article  CAS  Google Scholar 

  4. Jones, S.V., Choi, D.C., Davis, M. & Ressler, K.J. J. Neurosci. 28, 13106–13111 (2008).

    Article  CAS  Google Scholar 

  5. Nader, K., Schafe, G.E. & Le Doux, J.E. Nature 406, 722–726 (2000).

    Article  CAS  Google Scholar 

  6. Dudai, Y. Annu. Rev. Neurosci. 35, 227–247 (2012).

    Article  CAS  Google Scholar 

  7. Schiller, D. et al. Nature 463, 49–53 (2010).

    Article  CAS  Google Scholar 

  8. de Beukelaar, T.T., Woolley, D.G. & Wenderoth, N. Cortex 59, 138–145 (2014).

    Article  Google Scholar 

  9. Censor, N., Horovitz, S.G. & Cohen, L.G. Neuron 81, 69–76 (2014).

    Article  CAS  Google Scholar 

  10. Rouder, J.N., Morey, R.D., Speckman, P.L. & Province, J.M. J. Math. Psychol. 56, 356–374 (2012).

    Article  Google Scholar 

  11. Morey, R.D. & Rouder, J.N. BayesFactor 0.9. 12–2. https://cran.r-project.org/web/packages/BayesFactor/index.html (Comprehensive R Archive Network, 2015).

  12. Johnson, V.E. Proc. Natl. Acad. Sci. USA 110, 19313–19317 (2013).

    Article  CAS  Google Scholar 

  13. Lee, J.L. Nat. Neurosci. 11, 1264–1266 (2008).

    Article  CAS  Google Scholar 

  14. Censor, N., Karni, A. & Sagi, D. Vision Res. 46, 4071–4074 (2006).

    Article  Google Scholar 

  15. Aberg, K.C., Tartaglia, E.M. & Herzog, M.H. Vision Res. 49, 2087–2094 (2009).

    Article  Google Scholar 

  16. Hussain, Z., Sekuler, A.B. & Bennett, P.J. Vision Res. 49, 2624–2634 (2009).

    Article  Google Scholar 

  17. Ahissar, M. & Hochstein, S. Nature 387, 401–406 (1997).

    Article  CAS  Google Scholar 

  18. Tartaglia, E.M., Bamert, L., Mast, F.W. & Herzog, M.H. Curr. Biol. 19, 2081–2085 (2009).

    Article  CAS  Google Scholar 

  19. Menzel, R., Manz, G., Menzel, R. & Greggers, U. Learn. Mem. 8, 198–208 (2001).

    Article  CAS  Google Scholar 

  20. Stickgold, R., James, L. & Hobson, J.A. Nat. Neurosci. 3, 1237–1238 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Herszage, H. Harris, and D. Sagi for their feedback on this work and Y. Bonneh for experimental programming. The study was supported by the I-CORE program of the Planning and Budgeting Committee and the ISF (grant 51/11).

Author information

Authors and Affiliations

Authors

Contributions

R.A.H., R.L.M., S.N., and N.C. designed the experiments. R.A.H., R.L.M., S.N., and N.C. collected the data. R.A.H., R.L.M., S.N., J.D.R., and N.C. analyzed the data. R.A.H., R.L.M., J.D.R., and N.C. wrote the paper.

Corresponding author

Correspondence to Nitzan Censor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amar-Halpert, R., Laor-Maayany, R., Nemni, S. et al. Memory reactivation improves visual perception. Nat Neurosci 20, 1325–1328 (2017). https://doi.org/10.1038/nn.4629

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4629

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing