Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Maintaining genome stability in the nervous system

Abstract

Active maintenance of genome stability is a prerequisite for the development and function of the nervous system. The high replication index during neurogenesis and the long life of mature neurons highlight the need for efficient cellular programs to safeguard genetic fidelity. Multiple DNA damage response pathways ensure that replication stress and other types of DNA lesions, such as oxidative damage, do not affect neural homeostasis. Numerous human neurologic syndromes result from defective DNA damage signaling and compromised genome integrity. These syndromes can involve different neuropathology, which highlights the diverse maintenance roles that are required for genome stability in the nervous system. Understanding how DNA damage signaling pathways promote neural development and preserve homeostasis is essential for understanding fundamental brain function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different DNA repair pathways function during neural development.
Figure 2: DNA damage signaling in the nervous sytem involves ATM and ATR.
Figure 3: The cell cycle of cortical progenitors changes during development.
Figure 4: Defective DNA single-stranded break repair can result in syndrome with varied neuropathology.

Similar content being viewed by others

References

  1. Barres, B.A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 (2008).

    CAS  PubMed  Google Scholar 

  2. Ge, W.P., Miyawaki, A., Gage, F.H., Jan, Y.N. & Jan, L.Y. Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484, 376–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Suberbielle, E. et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-beta. Nat. Neurosci. 16, 613–621 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. McKinnon, P.J. DNA repair deficiency and neurological disease. Nat. Rev. Neurosci. 10, 100–112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Caldecott, K.W. Single-strand break repair and genetic disease. Nat. Rev. Genet. 9, 619–631 (2008).

    CAS  PubMed  Google Scholar 

  7. Chapman, J.R., Taylor, M.R. & Boulton, S.J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510 (2012).

    CAS  PubMed  Google Scholar 

  8. Deans, A.J. & West, S.C. DNA interstrand crosslink repair and cancer. Nat. Rev. Cancer 11, 467–480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kee, Y. & D'Andrea, A.D. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev. 24, 1680–1694 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiricny, J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 7, 335–346 (2006).

    CAS  PubMed  Google Scholar 

  12. Kamileri, I., Karakasilioti, I. & Garinis, G.A. Nucleotide excision repair: new tricks with old bricks. Trends Genet. 28, 566–573 (2012).

    CAS  PubMed  Google Scholar 

  13. Garinis, G.A., van der Horst, G.T., Vijg, J. & Hoeijmakers, J.H. DNA damage and ageing: new-age ideas for an age-old problem. Nat. Cell Biol. 10, 1241–1247 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. O'Driscoll, M. et al. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol. Cell 8, 1175–1185 (2001).

    CAS  PubMed  Google Scholar 

  15. Woodbine, L. et al. PRKDC mutations in a SCID patient with profound neurological abnormalities. J. Clin. Invest. 123, 2969–2980 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Anttinen, A. et al. Neurological symptoms and natural course of xeroderma pigmentosum. Brain 131, 1979–1989 (2008).

    PubMed  Google Scholar 

  17. Borgesius, N.Z. et al. Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair. J. Neurosci. 31, 12543–12553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Compe, E. & Egly, J.M. TFIIH: when transcription met DNA repair. Nat. Rev. Mol. Cell Biol. 13, 343–354 (2012).

    CAS  PubMed  Google Scholar 

  19. Jackson, S.P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Barnes, D.E., Stamp, G., Rosewell, I., Denzel, A. & Lindahl, T. Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr. Biol. 8, 1395–1398 (1998).

    CAS  PubMed  Google Scholar 

  21. Deans, B., Griffin, C.S., Maconochie, M. & Thacker, J. Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice. EMBO J. 19, 6675–6685 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao, Y. et al. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95, 891–902 (1998).

    CAS  PubMed  Google Scholar 

  23. Shull, E.R. et al. Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes Dev. 23, 171–180 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Frappart, P.O. et al. An essential function for NBS1 in the prevention of ataxia and cerebellar defects. Nat. Med. 11, 538–544 (2005).

    CAS  PubMed  Google Scholar 

  25. Sugo, N., Aratani, Y., Nagashima, Y., Kubota, Y. & Koyama, H. Neonatal lethality with abnormal neurogenesis in mice deficient in DNA polymerase beta. EMBO J. 19, 1397–1404 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, Y. et al. Neurogenesis requires TopBP1 to prevent catastrophic replicative DNA damage in early progenitors. Nat. Neurosci. 15, 819–826 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Herzog, K.H., Chong, M.J., Kapsetaki, M., Morgan, J.I. & McKinnon, P.J. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280, 1089–1091 (1998).

    CAS  PubMed  Google Scholar 

  28. Nijhawan, D., Honarpour, N. & Wang, X. Apoptosis in neural development and disease. Annu. Rev. Neurosci. 23, 73–87 (2000).

    CAS  PubMed  Google Scholar 

  29. Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750 (1998).

    CAS  PubMed  Google Scholar 

  30. Shull, E.R. et al. Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes Dev. 23, 171–180 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, Y. et al. ATR maintains select progenitors during nervous system development. EMBO J. 31, 1177–1189 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013).

    CAS  PubMed  Google Scholar 

  33. Stracker, T.H. & Petrini, J.H. The MRE11 complex: starting from the ends. Nat. Rev. Mol. Cell Biol. 12, 90–103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. McKinnon, P.J. ATM and the molecular pathogenesis of ataxia telangiectasia. Annu. Rev. Pathol. 7, 303–321 (2012).

    CAS  PubMed  Google Scholar 

  35. Taylor, A.M., Groom, A. & Byrd, P.J. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst.) 3, 1219–1225 (2004).

    CAS  Google Scholar 

  36. Stewart, G.S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 (1999).

    CAS  PubMed  Google Scholar 

  37. Carney, J.P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).

    CAS  PubMed  Google Scholar 

  38. Sartori, A.A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cimprich, K.A. & Cortez, D. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616–627 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. O'Driscoll, M., Dobyns, W.B., van Hagen, J.M. & Jeggo, P.A. Cellular and clinical impact of haploinsufficiency for genes involved in ATR signaling. Am. J. Hum. Genet. 81, 77–86 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. O'Driscoll, M., Ruiz-Perez, V.L., Woods, C.G., Jeggo, P.A. & Goodship, J.A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat. Genet. 33, 497–501 (2003).

    CAS  PubMed  Google Scholar 

  42. Kumagai, A., Lee, J., Yoo, H.Y. & Dunphy, W.G. TopBP1 activates the ATR-ATRIP complex. Cell 124, 943–955 (2006).

    CAS  PubMed  Google Scholar 

  43. Orii, K.E., Lee, Y., Kondo, N. & McKinnon, P.J. Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development. Proc. Natl. Acad. Sci. USA 103, 10017–10022 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Arai, Y. et al. Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat. Commun. 2, 154 (2011).

    PubMed  Google Scholar 

  45. Caviness, V.S. Jr., Nowakowski, R.S. & Bhide, P.G. Neocortical neurogenesis: morphogenetic gradients and beyond. Trends Neurosci. 32, 443–450 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dehay, C. & Kennedy, H. Cell-cycle control and cortical development. Nat. Rev. Neurosci. 8, 438–450 (2007).

    CAS  PubMed  Google Scholar 

  47. Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    PubMed  Google Scholar 

  48. Kishi, Y., Fujii, Y., Hirabayashi, Y. & Gotoh, Y. HMGA regulates the global chromatin state and neurogenic potential in neocortical precursor cells. Nat. Neurosci. 15, 1127–1133 (2012).

    CAS  PubMed  Google Scholar 

  49. Catez, F. et al. Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin. Mol. Cell. Biol. 24, 4321–4328 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao, K., Kas, E., Gonzalez, E. & Laemmli, U.K. SAR-dependent mobilization of histone H1 by HMG-I/Y in vitro: HMG-I/Y is enriched in H1-depleted chromatin. EMBO J. 12, 3237–3247 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463–473 (2000).

    CAS  PubMed  Google Scholar 

  52. Murga, M. et al. Global chromatin compaction limits the strength of the DNA damage response. J. Cell Biol. 178, 1101–1108 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Murr, R. et al. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat. Cell Biol. 8, 91–99 (2006).

    CAS  PubMed  Google Scholar 

  54. Sulli, G., Di Micco, R. & d'Adda di Fagagna, F. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat. Rev. Cancer 12, 709–720 (2012).

    CAS  PubMed  Google Scholar 

  55. Sun, Y. et al. Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat. Cell Biol. 11, 1376–1382 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Soria, G., Polo, S.E. & Almouzni, G. Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol. Cell 46, 722–734 (2012).

    CAS  PubMed  Google Scholar 

  57. Mellén, M., Ayata, P., Dewell, S., Kriaucionis, S. & Heintz, N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151, 1417–1430 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. Baker, S.A. et al. An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell 152, 984–996 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Skene, P.J. et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37, 457–468 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ronan, J.L., Wu, W. & Crabtree, G.R. From neural development to cognition: unexpected roles for chromatin. Nat. Rev. Genet. 14, 347–359 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Aguilera, A. & Garcia-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012).

    CAS  PubMed  Google Scholar 

  62. Hanawalt, P.C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 9, 958–970 (2008).

    CAS  PubMed  Google Scholar 

  63. Li, X. & Manley, J.L. Cotranscriptional processes and their influence on genome stability. Genes Dev. 20, 1838–1847 (2006).

    CAS  PubMed  Google Scholar 

  64. Saxowsky, T.T. & Doetsch, P.W. RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? Chem. Rev. 106, 474–488 (2006).

    CAS  PubMed  Google Scholar 

  65. Latella, L., Lukas, J., Simone, C., Puri, P.L. & Bartek, J. Differentiation-induced radioresistance in muscle cells. Mol. Cell Biol. 24, 6350–6361 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fortini, P., Ferretti, C. & Dogliotti, E. The response to DNA damage during differentiation: Pathways and consequences. Mutat. Res. 743–744, 160–168 (2013).

    PubMed  Google Scholar 

  67. Barzilai, A. The contribution of the DNA damage response to neuronal viability. Antioxid. Redox Signal. 9, 211–218 (2007).

    CAS  PubMed  Google Scholar 

  68. Du, F. et al. Tightly coupled brain activity and cerebral ATP metabolic rate. Proc. Natl. Acad. Sci. USA 105, 6409–6414 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Karanjawala, Z.E., Murphy, N., Hinton, D.R., Hsieh, C.L. & Lieber, M.R. Oxygen metabolism causes chromosome breaks and is associated with the neuronal apoptosis observed in DNA double-strand break repair mutants. Curr. Biol. 12, 397–402 (2002).

    CAS  PubMed  Google Scholar 

  70. Ju, B.G. et al. A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006).

    CAS  PubMed  Google Scholar 

  71. Ming, G.L. & Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687–702 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao, C., Deng, W. & Gage, F.H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    CAS  PubMed  Google Scholar 

  73. Spalding, K.L. et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219–1227 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shen, J. et al. Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat. Genet. 42, 245–249 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Date, H. et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat. Genet. 29, 184–188 (2001).

    CAS  PubMed  Google Scholar 

  76. Moreira, M.C. et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat. Genet. 29, 189–193 (2001).

    CAS  PubMed  Google Scholar 

  77. Takashima, H. et al. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat. Genet. 32, 267–272 (2002).

    CAS  PubMed  Google Scholar 

  78. Ahel, I. et al. The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 443, 713–716 (2006).

    CAS  PubMed  Google Scholar 

  79. Weinfeld, M., Mani, R.S., Abdou, I., Aceytuno, R.D. & Glover, J.N. Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem. Sci. 36, 262–271 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Reynolds, J.J., Walker, A.K., Gilmore, E.C., Walsh, C.A. & Caldecott, K.W. Impact of PNKP mutations associated with microcephaly, seizures and developmental delay on enzyme activity and DNA strand break repair. Nucleic Acids Res. 40, 6608–6619 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Breslin, C. & Caldecott, K.W. DNA 3′-phosphatase activity is critical for rapid global rates of single-strand break repair following oxidative stress. Mol. Cell Biol. 29, 4653–4662 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. O'Driscoll, M. & Jeggo, P.A. The role of double-strand break repair–insights from human genetics. Nat. Rev. Genet. 7, 45–54 (2006).

    CAS  PubMed  Google Scholar 

  83. Klingseisen, A. & Jackson, A.P. Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev. 25, 2011–2024 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Thornton, G.K. & Woods, C.G. Primary microcephaly: do all roads lead to Rome? Trends Genet. 25, 501–510 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Griffith, E. et al. Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nat. Genet. 40, 232–236 (2008).

    CAS  PubMed  Google Scholar 

  86. Gruber, R. et al. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat. Cell Biol. 13, 1325–1334 (2011).

    CAS  PubMed  Google Scholar 

  87. Higginbotham, H.R. & Gleeson, J.G. The centrosome in neuronal development. Trends Neurosci. 30, 276–283 (2007).

    CAS  PubMed  Google Scholar 

  88. Wang, X. et al. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461, 947–955 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Alderton, G.K. et al. Regulation of mitotic entry by microcephalin and its overlap with ATR signaling. Nat. Cell Biol. 8, 725–733 (2006).

    CAS  PubMed  Google Scholar 

  90. Shimada, M. & Komatsu, K. Emerging connection between centrosome and DNA repair machinery. J. Radiat. Res. (Tokyo) 50, 295–301 (2009).

    CAS  Google Scholar 

  91. Tibelius, A. et al. Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. J. Cell Biol. 185, 1149–1157 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kalay, E. et al. CEP152 is a genome maintenance protein disrupted in Seckel syndrome. Nat. Genet. 43, 23–26 (2011).

    CAS  PubMed  Google Scholar 

  93. DiMauro, S. & Schon, E.A. Mitochondrial disorders in the nervous system. Annu. Rev. Neurosci. 31, 91–123 (2008).

    CAS  PubMed  Google Scholar 

  94. Copeland, W.C. Inherited mitochondrial diseases of DNA replication. Annu. Rev. Med. 59, 131–146 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. de Souza-Pinto, N.C., Wilson, D.M. III, Stevnsner, T.V. & Bohr, V.A. Mitochondrial DNA, base excision repair and neurodegeneration. DNA Repair (Amst.) 7, 1098–1109 (2008).

    CAS  Google Scholar 

  96. Sykora, P., Croteau, D.L., Bohr, V.A. & Wilson, D.M. III. Aprataxin localizes to mitochondria and preserves mitochondrial function. Proc. Natl. Acad. Sci. USA 108, 7437–7442 (2011).

    PubMed  PubMed Central  Google Scholar 

  97. Gao, Y. et al. DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair. Nature 471, 240–244 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, H. et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141, 280–289 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang, E. et al. The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death. Nat. Cell Biol. 12, 563–571 (2010).

    CAS  PubMed  Google Scholar 

  100. Nouspikel, T. & Hanawalt, P.C. When parsimony backfires: neglecting DNA repair may doom neurons in Alzheimer's disease. Bioessays 25, 168–173 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.J.M. is supported by the US National Institutes of Health (NS-37956, CA-96832), a Cancer Center Support grant (P30 CA21765) and the American Lebanese and Syrian Associated Charities of St. Jude Children's Research Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J McKinnon.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinnon, P. Maintaining genome stability in the nervous system. Nat Neurosci 16, 1523–1529 (2013). https://doi.org/10.1038/nn.3537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing