Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior

An Erratum to this article was published on 22 November 2013

This article has been updated

Abstract

Two genome duplications early in the vertebrate lineage expanded gene families, including GluN2 subunits of the NMDA receptor. Diversification between the four mammalian GluN2 proteins occurred primarily at their intracellular C-terminal domains (CTDs). To identify shared ancestral functions and diversified subunit-specific functions, we exchanged the exons encoding the GluN2A (also known as Grin2a) and GluN2B (also known as Grin2b) CTDs in two knock-in mice and analyzed the mice's biochemistry, synaptic physiology, and multiple learned and innate behaviors. The eight behaviors were genetically separated into four groups, including one group comprising three types of learning linked to conserved GluN2A/B regions. In contrast, the remaining five behaviors exhibited subunit-specific regulation. GluN2A/B CTD diversification conferred differential binding to cytoplasmic MAGUK proteins and differential forms of long-term potentiation. These data indicate that vertebrate behavior and synaptic signaling acquired increased complexity from the duplication and diversification of ancestral GluN2 genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and generation of mouse models a phylogeny illustrating the invertebrate GluN2 and four vertebrate GluN2 paralogs (GluN2A, GluN2B, GluN2C and GluN2D).
Figure 2: NMDAR channel physiology.
Figure 3: Learning behavior.
Figure 4: Emotion, motivation and motor behavior.
Figure 5: Summary of behavioral phenotypes resulting from GluN2 CTD deletion and swap mutations.
Figure 6: Evolutionary grouping of behavioral phenotypes.
Figure 7: Synaptic plasticity.

Similar content being viewed by others

Change history

  • 07 March 2013

    In the version of this article initially published, the citations to Figures 3a, 3b and 3c should have read 3a–d, 3e–h and 3i–l, respectively, and the citations to Figures 4a, 4b and 4c should have read 4a–d, 4e–h and 4i–l, respectively. Also, under Gene Targeting in Online Methods, the incorporation of a GluN2A intronic fragment was omitted from the description of the GluN2B C-terminal exon construct. The sentence should read "The GluN2B C-terminal exon was amplified by PCR from 129/OlaHsd mouse genomic DNA (using primers 5'-GTATACACGGAGTAGCTATAGAGGAGCG-3' and 5'-GTTTAAACTCAGACATCAGACTCAATACTAGAAA-3') and attached to a small fragment of GluN2A intronic DNA (amplified using primers 5'-GGCGCGCCTAGGGCATCAATGACAGGG-3' and 5'- GTATACAACTGTAGATGCCCTGTGAGGG-3'), and the assembled product was inserted into AscI and PacI engineered to lie between the homology arms and the 3' exon." The errors have been corrected in the PDF and HTML versions of this article.

  • 10 December 2012

    In the version of this article initially published online, the sentence "We rely on published studies of GluN2B conditional homozygous knockout mutants to establish that GluN2B is necessary for a behavior when we do not see a phenotype for that behavior with GluN2B heterozygous null mutants" was absent from the section "Genetic dissection of multiple behaviors." The GluN2B+/+ bar in Figure 3c was mislabeled GluN2A+/+, and the GluN2B2A(CTR)/2A(CTR) bar was mislabeled GluN2A2B(CTR)/2B(CTR). The note "although this was due to enhanced performance on initial trials" was absent from the Figure 3i legend. The GluN2AΔC/ΔC column of Figure 4 was mislabeled GluN2AΔC, and the GluN2B+/ΔC column was mislabeled GluN2BΔC. The Figure 7b legend mentioned the GluN2B CTR; the correct text is GluN2B CTD. The Figure 7h legend cited both GluN2A2B(CTR)/2B(CTR) and GluN2B2A(CTR)/2A(CTR) mice, and three NMDAR-binding MAGUKs; only the latter genotype should have been included, and the text should have read "two NMDAR-binding MAGUKs." The errors have been corrected for the print, PDF and HTML versions of this article.

  • 10 December 2012

    In the version of this article initially published online, the genotype GluN2B2A(CTR)/2A(CTR) was misstated as GluN2A2B(CTR)/2B(CTR) in four locations in the Figure 3 legend: following (ad), (c), (d) and (il). Finally, the first GluN2A2B(CTR) genotyping primer was given as 5′-CCACACGTACGGGGATGACCA-3′; the correct primer is 5′-TCAGTGCTTGCTTCACGGCAGC-3′. The errors have been corrected for the print, PDF and HTML versions of this article.

References

  1. Kandel, E.R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. LeDoux, J.E. Synaptic Self: How Our Brains Become Who We Are (Viking Press, 2002).

  3. Margulies, C., Tully, T. & Dubnau, J. Deconstructing memory in Drosophila. Curr. Biol. 15, R700–R713 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xia, S. et al. NMDA receptors mediate olfactory learning and memory in Drosophila. Curr. Biol. 15, 603–615 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Glanzman, D.L. Common mechanisms of synaptic plasticity in vertebrates and invertebrates. Curr. Biol. 20, R31–R36 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moore, B.R. The evolution of learning. Biol. Rev. Camb. Philos. Soc. 79, 301–335 (2004).

    Article  PubMed  Google Scholar 

  7. Emes, R.D. et al. Evolutionary expansion and anatomical specialization of synapse proteome complexity. Nat. Neurosci. 11, 799–806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. LeDoux, J. Rethinking the emotional brain. Neuron 73, 653–676 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohno, S. Evolution by Gene Duplication (George Allen and Unwin, 1970).

  10. McLysaght, A., Hokamp, K. & Wolfe, K.H. Extensive genomic duplication during early chordate evolution. Nat. Genet. 31, 200–204 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Prince, V.E. & Pickett, F.B. Splitting pairs: the diverging fates of duplicated genes. Nat. Rev. Genet. 3, 827–837 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Keller, M.J. & Gerhardt, H.C. Polyploidy alters advertisement call structure in gray treefrogs. Proc. Biol. Sci. 268, 341–345 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Okubo, K. & Nagahama, Y. Structural and functional evolution of gonadotropin-releasing hormone in vertebrates. Acta Physiol. (Oxf.) 193, 3–15 (2008).

    Article  CAS  Google Scholar 

  14. Ito, H., Ishikawa, Y., Yoshimoto, M. & Yamamoto, N. Diversity of brain morphology in teleosts: brain and ecological niche. Brain Behav. Evol. 69, 76–86 (2007).

    Article  PubMed  Google Scholar 

  15. Ryan, T.J., Emes, R.D., Grant, S.G. & Komiyama, N.H. Evolution of NMDA receptor cytoplasmic interaction domains: implications for organization of synaptic signaling complexes. BMC Neurosci. 9, 6 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ryan, T.J. & Grant, S.G. The origin and evolution of synapses. Nat. Rev. Neurosci. 10, 701–712 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Nakazawa, K., McHugh, T.J., Wilson, M.A. & Tonegawa, S. NMDA receptors, place cells and hippocampal spatial memory. Nat. Rev. Neurosci. 5, 361–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Barkus, C. et al. Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion. Eur. J. Pharmacol. 626, 49–56 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paoletti, P. Molecular basis of NMDA receptor functional diversity. Eur. J. Neurosci. 33, 1351–1365 (2011).

    Article  PubMed  Google Scholar 

  20. Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B. & Seeburg, P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Sakimura, K. et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373, 151–155 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Kishimoto, Y. et al. Conditioned eyeblink response is impaired in mutant mice lacking NMDA receptor subunit NR2A. Neuroreport 8, 3717–3721 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Sprengel, R. et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92, 279–289 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Kiyama, Y. et al. Increased thresholds for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor epsilon1 subunit. J. Neurosci. 18, 6704–6712 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boyce-Rustay, J.M. & Holmes, A. Ethanol-related behaviors in mice lacking the NMDA receptor NR2A subunit. Psychopharmacology (Berl.) 187, 455–466 (2006).

    Article  CAS  Google Scholar 

  26. Nakazawa, T. et al. NR2B tyrosine phosphorylation modulates fear learning as well as amygdaloid synaptic plasticity. EMBO J. 25, 2867–2877 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boyce-Rustay, J.M. & Holmes, A. Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic- and antidepressant-like effects in mice. Neuropsychopharmacology 31, 2405–2414 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Brigman, J.L. et al. Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit. Learn. Mem. 15, 50–54 (2008).

    Article  PubMed  Google Scholar 

  29. Jiao, J. et al. Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning. PLoS One 3, e1684 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bannerman, D.M. et al. NMDA receptor subunit NR2A is required for rapidly acquired spatial working memory, but not incremental spatial reference memory. J. Neurosci. 28, 3623–3630 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. von Engelhardt, J. et al. Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks. Neuron 60, 846–860 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Brigman, J.L. et al. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density and disrupts learning. J. Neurosci. 30, 4590–4600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brigman, J.L., Powell, E.M., Mittleman, G. & Young, J.W. Examining the genetic and neural components of cognitive flexibility using mice. Physiol. Behav. published online, doi:10.1016/physbeh.2011.12.024 (4 January 2012).

  34. Chen, B.S. & Roche, K.W. Regulation of NMDA receptors by phosphorylation. Neuropharmacology 53, 362–368 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Greer, J.M., Puetz, J., Thomas, K.R. & Capecchi, M.R. Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 403, 661–665 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Mori, H. et al. Role of the carboxy-terminal region of the GluR epsilon2 subunit in synaptic localization of the NMDA receptor channel. Neuron 21, 571–580 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Kutsuwada, T. et al. Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 16, 333–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Bussey, T.J. et al. New translational assays for preclinical modeling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology 62, 1191–1203 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Morton, A.J., Skillings, E., Bussey, T.J. & Saksida, L.M. Measuring cognitive deficits in disabled mice using an automated interactive touchscreen system. Nat. Methods 3, 767 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Fineberg, N.A. et al. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35, 591–604 (2010).

    Article  PubMed  Google Scholar 

  41. Köhr, G. et al. Intracellular domains of NMDA receptor subtypes are determinants for long-term potentiation induction. J. Neurosci. 23, 10791–10799 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moody, T.D. et al. Beta-adrenergic receptor activation rescues theta frequency stimulation–induced LTP deficits in mice expressing C-terminally truncated NMDA receptor GluN2A subunits. Learn. Mem. 18, 118–127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Husi, H., Ward, M.A., Choudhary, J.S., Blackstock, W.P. & Grant, S.G. Proteomic analysis of NMDA receptor–adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density–95 protein. Nature 396, 433–439 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Carlisle, H.J., Fink, A.E., Grant, S.G. & O'Dell, T.J. Opposing effects of PSD-93 and PSD-95 on long-term potentiation and spike timing–dependent plasticity. J. Physiol. (Lond.) 586, 5885–5900 (2008).

    Article  CAS  Google Scholar 

  46. Cousins, S.L., Papadakis, M., Rutter, A.R. & Stephenson, F.A. Differential interaction of NMDA receptor subtypes with the postsynaptic density–95 family of membrane associated guanylate kinase proteins. J. Neurochem. 104, 903–913 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Nithianantharajah, J. et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat. Neurosci. advance online publication, doi:10.1038/nn.3276 (2 December 2012).

  48. Endele, S. et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat. Genet. 42, 1021–1026 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. O'Roak, B.J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Talkowski, M.E. et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149, 525–537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    CAS  PubMed  Google Scholar 

  53. Ramírez-Solis, R., Davis, A.C. & Bradley, A. Gene targeting in embryonic stem cells. Methods Enzymol. 225, 855–878 (1993).

    Article  PubMed  Google Scholar 

  54. Komiyama, N.H. et al. SynGAP regulates ERK/MAPK signaling, synaptic plasticity and learning in the complex with postsynaptic density 95 and NMDA receptor. J. Neurosci. 22, 9721–9732 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kopanitsa, M.V., Afinowi, N.O. & Grant, S.G. Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays. BMC Neurosci. 7, 61 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Fricker and E. Tuck for technical support, M. Price for animal care, K. Elsegood for management of the GluN2AΔC and GluN2BΔC mouse colonies, and D. Maizels for artwork. We thank P. Seeburg (Max Planck Institute for Medical Research) for providing the GluN2AΔC and GluN2BΔC mouse lines, and P. Kind (University of Edinburgh) for sharing unpublished data. We are grateful to A. Bayés, G. Hardingham, T. Kitamura, A. McLysaght, R. Redondo, J. Sarinana and D. Wyllie for critical reading of early manuscript drafts, and R. Frank, I. Greger, D. Stemple, A. Bari, L. van de Lagemaat, S. Manakov and J. Symonds for discussions. This project was supported by the Wellcome Trust, Genes to Cognition Program, the UK Medical Research Council and European Union programs (Project GENCODYS No. 241995, Project EUROSPIN No. 242498, Project SYNSYS No. 242167 and Project PharMEA No. SME-2008-1-232554). T.J.R. was supported by a Wellcome Trust PhD Studentship for most of this project.

Author information

Authors and Affiliations

Authors

Contributions

T.J.R., S.G.N.G. and N.H.K. conceived and designed the project. T.J.R., M.V.K., T.I., J.N., N.O.A., C.P., T.J.O. and N.H.K. performed the experiments. T.J.R., M.V.K., L.E.S., R.S., L.M.S., T.J.B., T.J.O. and N.H.K. contributed new reagents and/or analytic tools. T.J.R., M.V.K., T.I., J.N. and T.J.O. analyzed the data. T.J.R., S.G.N.G. and N.H.K. wrote the manuscript.

Corresponding author

Correspondence to Noboru H Komiyama.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–4 (PDF 1644 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, T., Kopanitsa, M., Indersmitten, T. et al. Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior. Nat Neurosci 16, 25–32 (2013). https://doi.org/10.1038/nn.3277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing