Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Divergence of visual channels in the inner retina

Abstract

Bipolar cells form parallel channels that carry visual signals from the outer to the inner retina. Each type of bipolar cell is thought to carry a distinct visual message to select types of amacrine cells and ganglion cells. However, the number of ganglion cell types exceeds that of the bipolar cells providing their input, suggesting that bipolar cell signals diversify on transmission to ganglion cells. We explored in the salamander retina how signals from individual bipolar cells feed into multiple ganglion cells and found that each bipolar cell was able to evoke distinct responses among ganglion cells, differing in kinetics, adaptation and rectification properties. This signal divergence resulted primarily from interactions with amacrine cells that allowed each bipolar cell to send distinct signals to its target ganglion cells. Our findings indicate that individual bipolar cell–ganglion cell connections have distinct transfer functions. This expands the number of visual channels in the inner retina and enhances the computational power and feature selectivity of early visual processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Many ganglion cells respond to input from a single bipolar cell.
Figure 2: Individual pairs of bipolar and ganglion cells have distinct transmission properties.
Figure 3: Dynamics of bipolar cell signals are diversified by amacrine circuits.
Figure 4: Interactions with amacrine cells can control the kinetics of connections between bipolar and ganglion cells.
Figure 5: Adaptation of bipolar cell signals depends on interaction with amacrine cells.
Figure 6: Adaptation is specific to individual pairs of bipolar and ganglion cells.
Figure 7: Rectifying and nonrectifying transmission from bipolar cells.
Figure 8: Amacrine cells can gate individual bipolar cell signals.

Similar content being viewed by others

References

  1. Wässle, H. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5, 747–757 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. Masland, R.H. The fundamental plan of the retina. Nat. Neurosci. 4, 877–886 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Wu, S.M., Gao, F. & Maple, B.R. Functional architecture of synapses in the inner retina: segregation of visual signals by stratification of bipolar cell axon terminals. J. Neurosci. 20, 4462–4470 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ghosh, K.K., Bujan, S., Haverkamp, S., Feigenspan, A. & Wässle, H. Types of bipolar cells in the mouse retina. J. Comp. Neurol. 469, 70–82 (2004).

    Article  PubMed  Google Scholar 

  5. Roska, B., Molnar, A. & Werblin, F.S. Parallel processing in retinal ganglion cells: how integration of space-time patterns of excitation and inhibition form the spiking output. J. Neurophysiol. 95, 3810–3822 (2006).

    Article  PubMed  Google Scholar 

  6. Boycott, B.B. & Wässle, H. Morphological classification of bipolar cells of the primate retina. Eur. J. Neurosci. 3, 1069–1088 (1991).

    Article  PubMed  Google Scholar 

  7. Awatramani, G.B. & Slaughter, M.M. Origin of transient and sustained responses in ganglion cells of the retina. J. Neurosci. 20, 7087–7095 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mariani, A.P. Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature 308, 184–186 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. Slaughter, M.M. & Miller, R.F. 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211, 182–185 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. DeVries, S.H. Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 28, 847–856 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Tachibana, M. & Kaneko, A. Retinal bipolar cells receive negative feedback input from GABAergic amacrine cells. Vis. Neurosci. 1, 297–305 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Nirenberg, S. & Meister, M. The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron 18, 637–650 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Dong, C.J. & Werblin, F.S. Temporal contrast enhancement via GABAC feedback at bipolar terminals in the tiger salamander retina. J. Neurophysiol. 79, 2171–2180 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Gollisch, T. & Meister, M. Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65, 150–164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Enroth-Cugell, C. & Freeman, A.W. The receptive-field spatial structure of cat retinal Y cells. J. Physiol. (Lond.) 384, 49–79 (1987).

    Article  CAS  Google Scholar 

  16. Demb, J.B., Zaghloul, K., Haarsma, L. & Sterling, P. Bipolar cells contribute to nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian retina. J. Neurosci. 21, 7447–7454 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baccus, S.A., Ölveczky, B.P., Manu, M. & Meister, M. A retinal circuit that computes object motion. J. Neurosci. 28, 6807–6817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Enroth-Cugell, C. & Robson, J.G. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.) 187, 517–552 (1966).

    Article  CAS  Google Scholar 

  19. Demb, J.B. Cellular mechanisms for direction selectivity in the retina. Neuron 55, 179–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Burrone, J. & Lagnado, L. Synaptic depression and the kinetics of exocytosis in retinal bipolar cells. J. Neurosci. 20, 568–578 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singer, J.H. & Diamond, J.S. Vesicle depletion and synaptic depression at a mammalian ribbon synapse. J. Neurophysiol. 95, 3191–3198 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Jarsky, T. et al. A synaptic mechanism for retinal adaptation to luminance and contrast. J. Neurosci. 31, 11003–11015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oesch, N.W. & Diamond, J.S. Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells. Nat. Neurosci. 14, 1555–1561 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ölveczky, B.P., Baccus, S.A. & Meister, M. Retinal adaptation to object motion. Neuron 56, 689–700 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wässle, H., Puller, C., Müller, F. & Haverkamp, S. Cone contacts, mosaics and territories of bipolar cells in the mouse retina. J. Neurosci. 29, 106–117 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhang, A.-J. & Wu, S.M. Receptive fields of retinal bipolar cells are mediated by heterogeneous synaptic circuitry. J. Neurosci. 29, 789–797 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhang, A.-J. & Wu, S.M. Responses and receptive fields of amacrine cells and ganglion cells in the salamander retina. Vision Res. 50, 614–622 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Arai, I., Tanaka, M. & Tachibana, M. Active roles of electrically coupled bipolar cell network in the adult retina. J. Neurosci. 30, 9260–9270 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mittman, S., Taylor, W.R. & Copenhagen, D.R. Concomitant activation of two types of glutamate receptor mediates excitation of salamander retinal ganglion cells. J. Physiol. (Lond.) 428, 175–197 (1990).

    Article  CAS  Google Scholar 

  30. Lukasiewicz, P.D., Lawrence, J.E. & Valentino, T.L. Desensitizing glutamate receptors shape excitatory synaptic inputs to tiger salamander retinal ganglion cells. J. Neurosci. 15, 6189–6199 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jones, S.M. & Palmer, M.J. Activation of the tonic GABAC receptor current in retinal bipolar cell terminals by nonvesicular GABA release. J. Neurophysiol. 102, 691–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. von Gersdorff, H. & Matthews, G. Depletion and replenishment of vesicle pools at a ribbontype synaptic terminal. J. Neurosci. 17, 1919–1927 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, K.J. & Rieke, F. Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. J. Neurosci. 21, 287–299 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, K.J. & Rieke, F. Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. J. Neurosci. 23, 1506–1516 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kastner, D.B. & Baccus, S.A. Coordinated dynamic encoding in the retina using opposing forms of plasticity. Nat. Neurosci. 14, 1317–1322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rieke, F. Temporal contrast adaptation in salamander bipolar cells. J. Neurosci. 21, 9445–9454 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baccus, S.A. & Meister, M. Fast and slow contrast adaptation in retinal circuitry. Neuron 36, 909–919 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513–515 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Matsui, K., Hosoi, N. & Tachibana, M. Excitatory synaptic transmission in the inner retina: paired recordings of bipolar cells and neurons of the ganglion cell layer. J. Neurosci. 18, 4500–4510 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Geffen, M.N., de Vries, S.E.J. & Meister, M. Retinal ganglion cells can rapidly change polarity from Off to On. PLoS Biol. 5, e65 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roska, B., Nemeth, E. & Werblin, F.S. Response to change is facilitated by a three-neuron disinhibitory pathway in the tiger salamander retina. J. Neurosci. 18, 3451–3459 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dowling, J.E. & Werblin, F.S. Synaptic organization of the vertebrate retina. Virus Res. 11, 1–15 (1971).

    Google Scholar 

  43. Brandstätter, J.H., Koulen, P., Kuhn, R., van der Putten, H. & Wässle, H. Compartmental localization of a metabotropic glutamate receptor (mGluR7): two different active sites at a retinal synapse. J. Neurosci. 16, 4749–4756 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Taylor, W.R., Mittman, S. & Copenhagen, D.R. Passive electrical cable properties and synaptic excitation of tiger salamander retinal ganglion cells. Vis. Neurosci. 13, 979–990 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Dreosti, E., Esposti, F., Baden, T. & Lagnado, L. In vivo evidence that retinal bipolar cells generate spikes modulated by light. Nat. Neurosci. 14, 951–952 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lagnado, L., Gomis, A. & Job, C. Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. Neuron 17, 957–967 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Cook, P.B. & McReynolds, J.S. Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nat. Neurosci. 1, 714–719 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Famiglietti, E.V. Polyaxonal amacrine cells of rabbit retina: morphology and stratification of PA1 cells. J. Comp. Neurol. 316, 391–405 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Barlow, H.B. & Levick, W.R. The mechanism of directionally selective units in rabbit's retina. J. Physiol. (Lond.) 178, 477–504 (1965).

    Article  CAS  Google Scholar 

  50. Hosoya, T., Baccus, S.A. & Meister, M. Dynamic predictive coding by the retina. Nature 436, 71–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Meister, M., Pine, J. & Baylor, D.A. Multi-neuronal signals from the retina: acquisition and analysis. J. Neurosci. Methods 51, 95–106 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Segev, R., Goodhouse, J., Puchalla, J. & Berry, M.J. Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat. Neurosci. 7, 1154–1161 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Tsodyks, M., Pawelzik, K. & Markram, H. Neural networks with dynamic synapses. Neural Comput. 10, 821–835 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Mao, B.Q., MacLeish, P.R. & Victor, J.D. The intrinsic dynamics of retinal bipolar cells isolated from tiger salamander. Vis. Neurosci. 15, 425–438 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Kaneko, A., Pinto, L.H. & Tachibana, M. Transient calcium current of retinal bipolar cells of the mouse. J. Physiol. (Lond.) 410, 613–629 (1989).

    Article  CAS  Google Scholar 

  56. Eggers, E.D. & Lukasiewicz, P.D. Receptor and transmitter release properties set the time course of retinal inhibition. J. Neurosci. 26, 9413–9425 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge E. Soucy for his extensive help with the experiments, as well as all of the members of the Meister laboratory for many useful discussions. This work was supported by a Postdoctoral Fellowship for Research Abroad from the Japan Society for the Promotion of Science (H.A.) and grants from the US National Institutes of Health (M.M.).

Author information

Authors and Affiliations

Authors

Contributions

H.A. and M.M. designed the study and wrote the manuscript. H.A. performed the experiments and analysis.

Corresponding author

Correspondence to Markus Meister.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asari, H., Meister, M. Divergence of visual channels in the inner retina. Nat Neurosci 15, 1581–1589 (2012). https://doi.org/10.1038/nn.3241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing