Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SUMOylation and phosphorylation of GluK2 regulate kainate receptor trafficking and synaptic plasticity

Abstract

Phosphorylation or SUMOylation of the kainate receptor (KAR) subunit GluK2 have both individually been shown to regulate KAR surface expression. However, it is unknown whether phosphorylation and SUMOylation of GluK2 are important for activity-dependent KAR synaptic plasticity. We found that protein kinase C–mediated phosphorylation of GluK2 at serine 868 promotes GluK2 SUMOylation at lysine 886 and that both of these events are necessary for the internalization of GluK2-containing KARs that occurs during long-term depression of KAR-mediated synaptic transmission at rat hippocampal mossy fiber synapses. Conversely, phosphorylation of GluK2 at serine 868 in the absence of SUMOylation led to an increase in KAR surface expression by facilitating receptor recycling between endosomal compartments and the plasma membrane. Our results suggest a role for the dynamic control of synaptic SUMOylation in the regulation of KAR synaptic transmission and plasticity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phosphorylation promotes the SUMO-1–dependent removal of synaptic KARs.
Figure 2: Phosphorylation of S868 on GluK2 promotes SUMOylation at K886 and subsequent removal of surface KARs.
Figure 3: Phosphorylation of S868 on GluK2 increases surface expression of KARs.
Figure 4: PKC activation promotes KAR localization in recycling pathways.
Figure 5: PKC activation enhances KAR recycling in neurons.
Figure 6: Phosphorylation of S868 on GluK2 enhances KAR recycling in HEK cells.
Figure 7: KAR LTD at mossy fiber synapses is dependent on activation of mGluR5 and PKC.
Figure 8: SUMOylation is required for KAR LTD.

Similar content being viewed by others

References

  1. Bliss, T.V. & Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Palmer, C.L., Cotton, L. & Henley, J.M. The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol. Rev. 57, 253–277 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Cognet, L., Groc, L., Lounis, B. & Choquet, D. Multiple routes for glutamate receptor trafficking: surface diffusion and membrane traffic cooperate to bring receptors to synapses. Sci. STKE 2006, pe13 (2006).

    PubMed  Google Scholar 

  4. Santos, S.D., Carvalho, A.L., Caldeira, M.V. & Duarte, C.B. Regulation of AMPA receptors and synaptic plasticity. Neuroscience 158, 105–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Isaac, J.T., Mellor, J., Hurtado, D. & Roche, K.W. Kainate receptor trafficking: physiological roles and molecular mechanisms. Pharmacol. Ther. 104, 163–172 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Huettner, J.E. Kainate receptors and synaptic transmission. Prog. Neurobiol. 70, 387–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Ren, Z. et al. Multiple trafficking signals regulate kainate receptor KA2 subunit surface expression. J. Neurosci. 23, 6608–6616 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jaskolski, F., Coussen, F. & Mulle, C. Subcellular localization and trafficking of kainate receptors. Trends Pharmacol. Sci. 26, 20–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Jaskolski, F. et al. Subunit composition and alternative splicing regulate membrane delivery of kainate receptors. J. Neurosci. 24, 2506–2515 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hirbec, H. et al. Rapid and differential regulation of AMPA and kainate receptors at hippocampal mossy fibre synapses by PICK1 and GRIP. Neuron 37, 625–638 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coussen, F. et al. Co-assembly of two GluR6 kainate receptor splice variants within a functional protein complex. Neuron 47, 555–566 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Yan, S. et al. A C-terminal determinant of GluR6 kainate receptor trafficking. J. Neurosci. 24, 679–691 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park, Y., Jo, J., Isaac, J.T. & Cho, K. Long-term depression of kainate receptor–mediated synaptic transmission. Neuron 49, 95–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Selak, S. et al. A role for SNAP25 in internalization of kainate receptors and synaptic plasticity. Neuron 63, 357–371 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Cho, K. et al. Regulation of kainate receptors by protein kinase C and metabotropic glutamate receptors. J. Physiol. 548, 723–730 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rivera, R., Rozas, J.L. & Lerma, J. PKC-dependent autoregulation of membrane kainate receptors. EMBO J. 26, 4359–4367 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martin, S., Nishimune, A., Mellor, J.R. & Henley, J.M. SUMOylation regulates kainate receptor–mediated synaptic transmission. Nature 447, 321–325 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin, S., Wilkinson, K.A., Nishimune, A. & Henley, J.M. Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat. Rev. Neurosci. 8, 948–959 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilkinson, K.A. & Henley, J.M. Mechanisms, regulation and consequences of protein SUMOylation. Biochem. J. 428, 133–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Seeler, J.S. & Dejean, A. Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol. 4, 690–699 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, S.H., Jaffray, E., Senthinathan, B., Hay, R.T. & Sharrocks, A.D. SUMO and transcriptional repression: dynamic interactions between the MAP kinase and SUMO pathways. Cell Cycle 2, 528–530 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Yang, S.H., Jaffray, E., Hay, R.T. & Sharrocks, A.D. Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol. Cell 12, 63–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Hietakangas, V. et al. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl. Acad. Sci. USA 103, 45–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Konopacki, F.A. et al. Agonist-induced PKC phosphorylation regulates GluK2 SUMOylation and kainate receptor endocytosis. Proc. Natl. Acad. Sci. USA 108, 19772–19777 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nasu-Nishimura, Y., Jaffe, H., Isaac, J.T. & Roche, K.W. Differential regulation of kainate receptor trafficking by phosphorylation of distinct sites on GluR6. J. Biol. Chem. 285, 2847–2856 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Martin, S., Bouschet, T., Jenkins, E.L., Nishimune, A. & Henley, J.M. Bidirectional regulation of kainate receptor surface expression in hippocampal neurons. J. Biol. Chem. 283, 36435–36440 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin, S. & Henley, J.M. Activity-dependent endocytic sorting of kainate receptors to recycling or degradation pathways. EMBO J. 23, 4749–4759 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blanpied, T.A., Scott, D.B. & Ehlers, M.D. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 36, 435–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Shepherd, J.D. & Huganir, R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. van Weert, A.W., Geuze, H.J., Groothuis, B. & Stoorvogel, W. Primaquine interferes with membrane recycling from endosomes to the plasma membrane through a direct interaction with endosomes which does not involve neutralisation of endosomal pH nor osmotic swelling of endosomes. Eur. J. Cell Biol. 79, 394–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. House, C. & Kemp, B.E. Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science 238, 1726–1728 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Wilkinson, K.A., Nakamura, Y. & Henley, J.M. Targets and consequences of protein SUMOylation in neurons. Brain Res. Rev. 64, 195–212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bolte, S. & Cordelieres, F.P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Randall for providing electrophysiological facilities for experiments on cultured preparations, and S. Martin and J. Hanley for comments on previous versions of the manuscript. This work was funded by Biotechnology and Biological Sciences Research Council (S.E.L.C., J.R.M. and J.M.H.), the European Research Council (J.A.W. and J.M.H.), Medical Research Council (F.A.K., S.K. and J.M.H.) and the Wellcome Trust (J.R.M., J.M.H.). I.M.G.-G. is a European Molecular Biology Organization Fellow.

Author information

Authors and Affiliations

Authors

Contributions

S.E.L.C. performed the electrophysiology experiments and analyzed the results. I.M.G.-G. performed the imaging experiments and analyzed the results. K.A.W. and F.A.K. performed the biochemical experiments and analyzed the results. S.K. prepared SUMO and SENP proteins for electrophysiological experiments. J.M.H. and J.R.M. supervised the project. S.E.L.C., I.M.G.-G., J.M.H. and J.R.M. wrote the manuscript.

Corresponding author

Correspondence to Jack R Mellor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 2782 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamberlain, S., González-González, I., Wilkinson, K. et al. SUMOylation and phosphorylation of GluK2 regulate kainate receptor trafficking and synaptic plasticity. Nat Neurosci 15, 845–852 (2012). https://doi.org/10.1038/nn.3089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3089

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing