Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The nuclear import of Frizzled2-C by Importins-β11 and α2 promotes postsynaptic development

Abstract

Synapse-to-nucleus signaling is critical for synaptic development and plasticity. In Drosophila, the ligand Wingless causes the C terminus of its Frizzled2 receptor (Fz2-C) to be cleaved and translocated from the postsynaptic density to nuclei. The mechanism of nuclear import is unknown and the developmental consequences of this translocation are uncertain. We found that Fz2-C localization to muscle nuclei required the nuclear import factors Importin-β11 and Importin-α2 and that this pathway promoted the postsynaptic development of the subsynaptic reticulum (SSR), an elaboration of the postsynaptic plasma membrane. importin-β11 (imp-β11) and dfz2 mutants had less SSR, and some boutons lacked the postsynaptic marker Discs Large. These developmental defects in imp-β11 mutants could be overcome by expression of Fz2-C fused to a nuclear localization sequence that can bypass Importin-β11. Thus, Wnt-activated growth of the postsynaptic membrane is mediated by the synapse-to-nucleus translocation and active nuclear import of Fz2-C via a selective Importin-β11/α2 pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Importin-β11 and Importin-α2 are expressed in Drosophila muscle nuclei.
Figure 2: Importin-β11 and Importin-α2 are required for proper nuclear import of Fz2-C.
Figure 3: Wnt pathway components are properly localized in importin mutants.
Figure 4: Fz2 colocalizes with and binds Importin-β11 and Importin-α2.
Figure 5: An NLS-tagged, truncated Fz2-C construct localizes to synapses and is imported independently of Importin-β11.
Figure 6: Ghost boutons are more frequent at imp-β11 and imp-α2 mutant NMJs.
Figure 7: Loss of nuclear Fz2-C leads to reduced SSR thickness at the electron microscopy level.

Similar content being viewed by others

References

  1. Jordan, B.A. & Kreutz, M.R. Nucleocytoplasmic protein shuttling: the direct route in synapse-to-nucleus signaling. Trends Neurosci. 32, 392–401 (2009).

    Article  CAS  Google Scholar 

  2. Otis, K.O., Thompson, K.R. & Martin, K.C. Importin-mediated nuclear transport in neurons. Curr. Opin. Neurobiol. 16, 329–335 (2006).

    Article  CAS  Google Scholar 

  3. Weis, K. Nucleocytoplasmic transport: cargo trafficking across the border. Curr. Opin. Cell Biol. 14, 328–335 (2002).

    Article  CAS  Google Scholar 

  4. Perry, R.B. & Fainzilber, M. Nuclear transport factors in neuronal function. Semin. Cell Dev. Biol. 20, 600–606 (2009).

    Article  CAS  Google Scholar 

  5. Thompson, K.R. et al. Synapse to nucleus signaling during long-term synaptic plasticity; a role for the classical active nuclear import pathway. Neuron 44, 997–1009 (2004).

    CAS  Google Scholar 

  6. Ting, C.Y. et al. Tiling of r7 axons in the Drosophila visual system is mediated both by transduction of an activin signal to the nucleus and by mutual repulsion. Neuron 56, 793–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Salinas, P.C. & Zou, Y. Wnt signaling in neural circuit assembly. Annu. Rev. Neurosci. 31, 339–358 (2008).

    Article  CAS  Google Scholar 

  8. Cadigan, K.M. Wnt-beta-catenin signaling. Curr. Biol. 18, R943–R947 (2008).

    Article  CAS  Google Scholar 

  9. Lyu, J., Yamamoto, V. & Lu, W. Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis. Dev. Cell 15, 773–780 (2008).

    Article  CAS  Google Scholar 

  10. Mathew, D. et al. Wingless signaling at synapses is through cleavage and nuclear import of receptor DFrizzled2. Science 310, 1344–1347 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Ataman, B. et al. Nuclear trafficking of Drosophila Frizzled-2 during synapse development requires the PDZ protein dGRIP. Proc. Natl. Acad. Sci. USA 103, 7841–7846 (2006).

    Article  CAS  Google Scholar 

  12. Ataman, B. et al. Rapid activity–dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron 57, 705–718 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Miech, C., Pauer, H.U., He, X. & Schwarz, T.L. Presynaptic local signaling by a canonical wingless pathway regulates development of the Drosophila neuromuscular junction. J. Neurosci. 28, 10875–10884 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Packard, M. et al. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 111, 319–330 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Rheuben, M.B., Yoshihara, M. & Kidokoro, Y. Ultrastructural correlates of neuromuscular junction development. Int. Rev. Neurobiol. 43, 69–92 (1999).

    Article  CAS  Google Scholar 

  16. Higashi-Kovtun, M.E., Mosca, T.J., Dickman, D.K., Meinertzhagen, I.A. & Schwarz, T.L. Importin-beta11 regulates synaptic phosphorylated mothers against decapentaplegic and thereby influences synaptic development and function at the Drosophila neuromuscular junction. J. Neurosci. 30, 5253–5268 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Goldfarb, D.S., Corbett, A.H., Mason, D.A., Harreman, M.T. & Adam, S.A. Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol. 14, 505–514 (2004).

    Article  CAS  Google Scholar 

  18. Chen, C.M. & Struhl, G. Wingless transduction by the Frizzled and Frizzled2 proteins of Drosophila. Development 126, 5441–5452 (1999).

    CAS  Google Scholar 

  19. Menon, K.P., Andrews, S., Murthy, M., Gavis, E.R. & Zinn, K. The translational repressors Nanos and Pumilio have divergent effects on presynaptic terminal growth and postsynaptic glutamate receptor subunit composition. J. Neurosci. 29, 5558–5572 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Cantera, R., Kozlova, T., Barillas-Mury, C. & Kafatos, F.C. Muscle structure and innervation are affected by loss of Dorsal in the fruit fly, Drosophila melanogaster. Mol. Cell. Neurosci. 13, 131–141 (1999).

    Article  CAS  Google Scholar 

  21. Piddini, E., Marshall, F., Dubois, L., Hirst, E. & Vincent, J.P. Arrow (LRP6) and Frizzled2 cooperate to degrade Wingless in Drosophila imaginal discs. Development 132, 5479–5489 (2005).

    Article  CAS  Google Scholar 

  22. Lange, A. et al. Classical nuclear localization signals: definition, function and interaction with importin alpha. J. Biol. Chem. 282, 5101–5105 (2007).

    Article  CAS  Google Scholar 

  23. Roos, J., Hummel, T., Ng, N., Klambt, C. & Davis, G.W. Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26, 371–382 (2000).

    Article  CAS  Google Scholar 

  24. Hummel, T., Krukkert, K., Roos, J., Davis, G. & Klambt, C. Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 26, 357–370 (2000).

    Article  CAS  Google Scholar 

  25. Lahey, T., Gorczyca, M., Jia, X.X. & Budnik, V. The Drosophila tumor suppressor gene dlg is required for normal synaptic bouton structure. Neuron 13, 823–835 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Marrus, S.B. & DiAntonio, A. Preferential localization of glutamate receptors opposite sites of high presynaptic release. Curr. Biol. 14, 924–931 (2004).

    Article  CAS  Google Scholar 

  27. Aberle, H. et al. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558 (2002).

    Article  CAS  Google Scholar 

  28. Marqués, G. et al. The Drosophila BMP type II receptor wishful thinking regulates neuromuscular synapse morphology and function. Neuron 33, 529–543 (2002).

    Article  Google Scholar 

  29. Parnas, D., Haghighi, A.P., Fetter, R.D., Kim, S.W. & Goodman, C.S. Regulation of postsynaptic structure and protein localization by the Rho-type guanine nucleotide exchange factor dPix. Neuron 32, 415–424 (2001).

    Article  CAS  Google Scholar 

  30. Zhang, Y. et al. PAR-1 kinase phosphorylates Dlg and regulates its postsynaptic targeting at the Drosophila neuromuscular junction. Neuron 53, 201–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Coyle, I.P. et al. Nervous wreck, an SH3 adaptor protein that interacts with Wsp, regulates synaptic growth in Drosophila. Neuron 41, 521–534 (2004).

    Article  CAS  Google Scholar 

  32. Kumar, V. et al. Syndapin promotes formation of a postsynaptic membrane system in. Drosophila. Mol. Biol. Cell 20, 2254–2264 (2009).

    Article  CAS  Google Scholar 

  33. Pielage, J., Fetter, R.D. & Davis, G.W. A postsynaptic spectrin scaffold defines active zone size, spacing and efficacy at the Drosophila neuromuscular junction. J. Cell Biol. 175, 491–503 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Nimchinsky, E.A., Sabatini, B.L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002).

    Article  CAS  Google Scholar 

  35. Faeder, I.R. & Salpeter, M.M. Glutamate uptake by a stimulated insect nerve muscle preparation. J. Cell Biol. 46, 300–307 (1970).

    Article  CAS  PubMed  Google Scholar 

  36. Wong, K., Karunanithi, S. & Atwood, H.L. Quantal unit populations at the Drosophila larval neuromuscular junction. J. Neurophysiol. 82, 1497–1511 (1999).

    Article  CAS  Google Scholar 

  37. Sigrist, S.J. et al. Postsynaptic translation affects the efficacy and morphology of neuromuscular junctions. Nature 405, 1062–1065 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Guan, B., Hartmann, B., Kho, Y.H., Gorczyca, M. & Budnik, V. The Drosophila tumor suppressor gene, dlg, is involved in structural plasticity at a glutamatergic synapse. Curr. Biol. 6, 695–706 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Mosca, T.J., Carrillo, R.A., White, B.H. & Keshishian, H. Dissection of synaptic excitability phenotypes by using a dominant-negative Shaker K+ channel subunit. Proc. Natl. Acad. Sci. USA 102, 3477–3482 (2005).

    Article  CAS  Google Scholar 

  40. Chen, K. & Featherstone, D.E. Discs-large (DLG) is clustered by presynaptic innervation and regulates postsynaptic glutamate receptor subunit composition in Drosophila. BMC Biol. 3, 1 (2005).

    Article  PubMed  Google Scholar 

  41. Pack-Chung, E., Kurshan, P.T., Dickman, D.K. & Schwarz, T.L. A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport. Nat. Neurosci. 10, 980–989 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Freedman, N.D. & Yamamoto, K.R. Importin 7 and importin alpha/importin beta are nuclear import receptors for the glucocorticoid receptor. Mol. Biol. Cell 15, 2276–2286 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Giagtzoglou, N., Lin, Y.Q., Haueter, C. & Bellen, H.J. Importin 13 regulates neurotransmitter release at the Drosophila neuromuscular junction. J. Neurosci. 29, 5628–5639 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Wong, H.C. et al. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol. Cell 12, 1251–1260 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Ahmad-Annuar, A. et al. Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J. Cell Biol. 174, 127–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Ehebauer, M., Hayward, P. & Martinez-Arias, A. Notch signaling pathway. Sci. STKE 2006, cm7 (2006).

    Article  Google Scholar 

  47. Davis, E.K., Zou, Y. & Ghosh, A. Wnts acting through canonical and noncanonical signaling pathways exert opposite effects on hippocampal synapse formation. Neural Dev. 3, 32 (2008).

    Article  PubMed  Google Scholar 

  48. Speese, S.D. & Budnik, V. Wnts: up-and-coming at the synapse. Trends Neurosci. 30, 268–275 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Wairkar, Y.P. et al. Unc-51 controls active zone density and protein composition by downregulating ERK signaling. J. Neurosci. 29, 517–528 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. McCabe, B.D. et al. The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39, 241–254 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge V. Budnik and colleagues for generously providing antibodies and fly stocks and helpful discussions. We thank S. Cotterrill, R. Fleming, I. Kiss, P. Macdonald, B. Mechler, H. Bellen, M. Noll, M. Ramaswami, H. Saumweber, D. Schmucker, G. Struhl, J. Szabad, J.P. Vincent, S. Wasserman, Y. Jan, L. Zipursky, the Bloomington Stock Center and the Developmental Studies Hybridoma Bank for fly stocks and antibodies. We also thank M. Kovtun and members of the Schwarz laboratory for helpful discussions and critical readings of the manuscript, as well as M. Liana and L. Bu of the Intellectual and Developmental Disability Research Center Histology (grant number P30HD18655) and Imaging Cores for technical assistance. This work was supported by US National Institutes of Health grants RO1 NS041062 and MH075058 (T.L.S.) and a predoctoral fellowship from the National Defense Science and Engineering Graduate Foundation (T.J.M.).

Author information

Authors and Affiliations

Authors

Contributions

T.J.M. performed the experiments and analyzed the data. T.J.M. and T.L.S. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Thomas L Schwarz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Tables 1 and 2 (PDF 4380 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosca, T., Schwarz, T. The nuclear import of Frizzled2-C by Importins-β11 and α2 promotes postsynaptic development. Nat Neurosci 13, 935–943 (2010). https://doi.org/10.1038/nn.2593

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2593

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing