Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Paternal recognition of adult offspring mediated by newly generated CNS neurons

Abstract

In mammals, olfaction is often used to distinguish individuals on the basis of their unique odor types (genetically programmed body odors). Parental-offspring recognition behavior is mediated, in part, by learning and processing of different odor types and is crucial for reproductive success. Maternal recognition behavior and associated brain plasticity has been well characterized, but paternal recognition behavior and brain plasticity is poorly understood. We found that paternal-adult offspring recognition behavior in mice was dependent on postnatal offspring interaction and was associated with increased neurogenesis in the paternal olfactory bulb and hippocampus. Newly generated paternal olfactory interneurons were preferentially activated by adult offspring odors. Disrupting prolactin signaling abolished increased paternal neurogenesis and adult offspring recognition. Rescuing this neurogenesis restored recognition behavior. Thus, neurogenesis in the paternal brain may be involved in offspring recognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maternal and paternal mice display adult offspring recognition behavior.
Figure 2: Offspring interaction stimulates cell proliferation in the paternal brain.
Figure 3: Newly generated neurons in the paternal brain preferentially respond to adult offspring odors.
Figure 4: Prolactin mediates offspring-stimulated neurogenesis in the paternal brain.
Figure 5: Newly generated neurons in the paternal brain may be involved in adult offspring recognition behavior.

Similar content being viewed by others

References

  1. Brennan, P.A. & Kendrick, K.M. Mammalian social odors: attraction and individual recognition. Phil. Trans. R. Soc. Lond. B 361, 2061–2078 (2006).

    Article  CAS  Google Scholar 

  2. Dewsbury, D.A. Kin discrimination and reproductive behavior in muroid rodents. Behav. Genet. 18, 525–536 (1988).

    Article  CAS  Google Scholar 

  3. Pusey, A. & Wolf, M. Inbreeding avoidance in animals. Trends Ecol. Evol. 11, 201–206 (1996).

    Article  CAS  Google Scholar 

  4. Sánchez-Andrade, G., James, B.M. & Kendrick, K.M. Neural encoding of olfactory recognition memory. J. Reprod. Dev. 51, 547–558 (2005).

    Article  Google Scholar 

  5. Singh, P.B. Chemosensation and genetic individuality. Reproduction 121, 529–539 (2001).

    Article  CAS  Google Scholar 

  6. Restrepo, D., Lin, W., Salcedo, E., Yamazaki, K. & Beauchamp, G. Odortypes and MHC peptides: complementary chemosignals of MHC haplotype? Trends Neurosci. 29, 604–609 (2006).

    Article  CAS  Google Scholar 

  7. Yamazaki, K., Beauchamp, G.K., Curran, M., Bard, J. & Boyse, E.A. Parent-progeny recognition as a function of MHC odor type identity. Proc. Natl. Acad. Sci. USA 97, 10500–10502 (2000).

    Article  CAS  Google Scholar 

  8. Manning, C.J., Wakeland, E.K. & Potts, W.K. Communal nesting patterns in mice implicate MHC genes in kin recognition. Nature 360, 581–583 (1992).

    Article  CAS  Google Scholar 

  9. Woodroffe, R. & Vincent, A. Mother's little helpers: patterns of male care in mammals. Trends Ecol. Evol. 9, 294–297 (1994).

    Article  CAS  Google Scholar 

  10. Makin, J.W. & Porter, R.H. Paternal behavior in the spiny mouse (Acomys cahirinus). Behav. Neural Biol. 41, 135–151 (1984).

    Article  CAS  Google Scholar 

  11. Ostermeyer, M.C. & Elwood, R.W. Pup recognition in Mus musculus: parental discrimination between their own and alien young. Dev. Psychobiol. 16, 75–82 (1983).

    Article  CAS  Google Scholar 

  12. Buchan, J.C., Alberts, S.C., Silk, J.B. & Altmann, J. True paternal care in a multi-male primate society. Nature 425, 179–181 (2003).

    Article  CAS  Google Scholar 

  13. Dubas, J.S., Heijkoop, M. & van Aken, M.A.G. A preliminary investigation of parent-progeny olfactory recognition and parental investment. Hum. Nat. 20, 80–92 (2009).

    Article  Google Scholar 

  14. Porter, R.H. Olfaction and human kin recognition. Genetica 104, 259–263 (1998).

    Article  Google Scholar 

  15. Lledo, P.M., Gheusi, G. & Vincent, J.D. Information processing in the mammalian olfactory system. Physiol. Rev. 85, 281–317 (2005).

    Article  Google Scholar 

  16. Ming, G.L. & Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223–250 (2005).

    Article  CAS  Google Scholar 

  17. Mak, G.K. et al. Male pheromone–stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nat. Neurosci. 10, 1003–1011 (2007).

    Article  CAS  Google Scholar 

  18. Lonstein, J.S. & De Vries, G.J. Sex differences in the parental behavior of rodents. Neurosci. Biobehav. Rev. 24, 669–686 (2000).

    Article  CAS  Google Scholar 

  19. Lonstein, J.S. & Fleming, A.S. Parental behaviors in rats and mice. Curr. Protoc. Neurosci. 8, 8.15 (2002).

    Google Scholar 

  20. Enwere, E. et al. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis and deficits in fine olfactory discrimination. J. Neurosci. 24, 8354–8365 (2004).

    Article  CAS  Google Scholar 

  21. Rochefort, C., Gheusi, G., Vincent, J.D. & Lledo, P.M. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J. Neurosci. 22, 2679–2689 (2002).

    Article  CAS  Google Scholar 

  22. Rochefort, C. & Lledo, P.M. Short-term survival of newborn neurons in the adult olfactory bulb after exposure to a complex odor environment. Eur. J. Neurosci. 22, 2863–2870 (2005).

    Article  Google Scholar 

  23. Magavi, S.S., Mitchell, B.D., Szentirmai, O., Carter, B.S. & Macklis, J.D. Adult-born and pre-existing olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo. J. Neurosci. 25, 10729–10739 (2005).

    Article  CAS  Google Scholar 

  24. Shingo, T. et al. Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299, 117–120 (2003).

    Article  CAS  Google Scholar 

  25. Kelly, P.A., Binart, N., Lucas, B., Bouchard, B. & Goffin, V. Implications of multiple phenotypes observed in prolactin receptor knockout mice. Front. Neuroendocrinol. 22, 140–145 (2001).

    Article  CAS  Google Scholar 

  26. Hurst, J.L., Thom, M.D., Nevison, C.M., Humphries, R.E. & Beynon, R.J. MHC odors are not required or sufficient for recognition of individual scent owners. Proc. Biol. Sci. 272, 715–724 (2005).

    Article  Google Scholar 

  27. Pusey, A.E. Sex-biased dispersal and inbreeding avoidance in birds and mammals. Trends Ecol. Evol. 2, 295–299 (1987).

    Article  CAS  Google Scholar 

  28. Jiménez, J.A., Hughes, K.A., Alaks, G., Graham, L. & Lacy, R.C. An experimental study of inbreeding depression in a natural habitat. Science 266, 271–273 (1994).

    Article  Google Scholar 

  29. Pillay, N. Father-daughter recognition and inbreeding avoidance in the striped mouse, Rhabdomys pumilio. Mamm. Biol. 67, 212–218 (2002).

    Article  Google Scholar 

  30. Ruscio, M.G. et al. Pup exposure elicits hippocampal cell proliferation in the prairie vole. Behav. Brain Res. 187, 9–16 (2008).

    Article  Google Scholar 

  31. Sherborne, A.L. et al. The genetic basis of inbreeding avoidance in house mice. Curr. Biol. 17, 2061–2066 (2007).

    Article  CAS  Google Scholar 

  32. Curtis, M.A. et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315, 1243–1249 (2007).

    Article  CAS  Google Scholar 

  33. Eriksson, P.S. et al. Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317 (1998).

    Article  CAS  Google Scholar 

  34. Ormandy, C.J., Binart, N. & Kelly, P.A. Mammary gland development in prolactin receptor knockout mice. J. Mammary Gland Biol. Neoplasia 2, 355–364 (1997).

    Article  CAS  Google Scholar 

  35. Trinh, K. & Storm, D.R. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat. Neurosci. 6, 519–525 (2003).

    Article  CAS  Google Scholar 

  36. Ling, C. et al. Prolactin (PRL) receptor gene expression in mouse adipose tissue: increases during lactation and in PRL-transgenic mice. Endocrinology 141, 3564–3572 (2000).

    Article  CAS  Google Scholar 

  37. Gregg, C. et al. White matter plasticity and enhanced remyelination in the maternal CNS. J. Neurosci. 27, 1812–1823 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Markham for her helpful instruction and mentorship. We thank C. Gregg, B. Kolb, K. Lukowiak and D. van der Kooy for comments on earlier versions of this manuscript. This work was supported by the Canadian Institutes of Health Research and studentship (G.K.M.) and scientist (S.W.) awards from the Alberta Heritage Foundation for Medical Research.

Author information

Authors and Affiliations

Authors

Contributions

G.K.M. designed the project, collected the data, performed the analysis and wrote the paper. S.W. supervised the project, contributed to the design of the project and wrote the paper.

Corresponding author

Correspondence to Samuel Weiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 12755 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mak, G., Weiss, S. Paternal recognition of adult offspring mediated by newly generated CNS neurons. Nat Neurosci 13, 753–758 (2010). https://doi.org/10.1038/nn.2550

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2550

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing