Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directed differentiation of hippocampal stem/progenitor cells in the adult brain

Abstract

Adult neurogenesis is a lifelong feature of brain plasticity; however, the potency of adult neural stem/progenitor cells in vivo remains unclear. We found that retrovirus-mediated overexpression of a single gene, the bHLH transcription factor Ascl1, redirected the fate of the proliferating adult hippocampal stem/progenitor (AHP) progeny and lead to the exclusive generation of cells of the oligodendrocytic lineage at the expense of newborn neurons, demonstrating that AHPs in the adult mouse brain are not irrevocably specified in vivo. These data indicate that AHPs have substantial plasticity, which might have important implications for the potential use of endogenous AHPs in neurological disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ectopic Ascl1 expression changes the fate of newborn cells in the adult dentate gyrus.
Figure 2: Ascl1-expressing newborn cells have features of myelinating oligodendrocytes.
Figure 3: Long-term survival and species consistency of Ascl1-expressing cells.
Figure 4: Progeny of Ascl1-overexpressing cells and cells born under control conditions share common AHPs.
Figure 5: Retroviral Dlx2 does not affect neuronal differentiation in the adult hippocampus.
Figure 6: Ascl1 is expressed in the adult SVZ and rostral migratory stream (RMS).
Figure 7: Context-dependent effects of Ascl1.

Similar content being viewed by others

References

  1. Gage, F. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez-Buylla, A. & Lim, D.A. For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Ge, S., Yang, C.H., Hsu, K.S., Ming, G.L. & Song, H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54, 559–566 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carleton, A., Petreanu, L.T., Lansford, R., Alvarez-Buylla, A. & Lledo, P.M. Becoming a new neuron in the adult olfactory bulb. Nat. Neurosci. 6, 507–518 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Sahay, A. & Hen, R. Adult hippocampal neurogenesis in depression. Nat. Neurosci. 10, 1110–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, C., Deng, W. & Gage, F.H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S. & Kriegstein, A.R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Ahn, S. & Joyner, A.L. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437, 894–897 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Consiglio, A. et al. Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc. Natl. Acad. Sci. USA 101, 14835–14840 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suh, H. et al. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2(+) neural stem cells in the adult Hippocampus. Cell Stem Cell 1, 515–528 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hack, M.A. et al. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat. Neurosci. 8, 865–872 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Jackson, E.L. et al. PDGFRα-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51, 187–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Gabay, L., Lowell, S., Rubin, L.L. & Anderson, D.J. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485–499 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Ray, J. & Gage, F.H. Differential properties of adult rat and mouse brain-derived neural stem/progenitor cells. Mol. Cell. Neurosci. 31, 560–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Seaberg, R.M. & van der Kooy, D. Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J. Neurosci. 22, 1784–1793 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bull, N.D. & Bartlett, P.F. The adult mouse hippocampal progenitor is neurogenic, but not a stem cell. J. Neurosci. 25, 10815–10821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rowitch, D.H. Glial specification in the vertebrate neural tube. Nat. Rev. Neurosci. 5, 409–419 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Parras, C.M. et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495–4505 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Battiste, J. et al. Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development 134, 285–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Petryniak, M.A., Potter, G.B., Rowitch, D.H. & Rubenstein, J.L. Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 55, 417–433 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duan, X. et al. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130, 1146–1158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sherman, D.L. & Brophy, P.J. Mechanisms of axon ensheathment and myelin growth. Nat. Rev. Neurosci. 6, 683–690 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Avilion, A.A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Couillard-Despres, S. et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur. J. Neurosci. 21, 1–14 (2005).

    Article  PubMed  Google Scholar 

  27. Lu, Q.R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Poitras, L., Ghanem, N., Hatch, G. & Ekker, M. The proneural determinant MASH1 regulates forebrain Dlx1/2 expression through the I12b intergenic enhancer. Development 134, 1755–1765 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, E.J., Leung, C.T., Reed, R.R. & Johnson, J.E. In vivo analysis of Ascl1 defined progenitors reveals distinct developmental dynamics during adult neurogenesis and gliogenesis. J. Neurosci. 27, 12764–12774 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galichet, C., Guillemot, F. & Parras, C.M. Neurogenin 2 has an essential role in development of the dentate gyrus. Development 135, 2031–2041 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, M. et al. Loss of β2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc. Natl. Acad. Sci. USA 97, 865–870 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miyata, T., Maeda, T. & Lee, J.E. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev. 13, 1647–1652 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kondo, T. & Raff, M. Basic helix-loop-helix proteins and the timing of oligodendrocyte differentiation. Development 127, 2989–2998 (2000).

    CAS  PubMed  Google Scholar 

  34. Sugimori, M. et al. Ascl1 is required for oligodendrocyte development in the spinal cord. Development 135, 1271–1281 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Sugimori, M. et al. Combinatorial actions of patterning and HLH transcription factors in the spatiotemporal control of neurogenesis and gliogenesis in the developing spinal cord. Development 134, 1617–1629 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Parras, C.M. et al. The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. J. Neurosci. 27, 4233–4242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Babu, H., Cheung, G., Kettenmann, H., Palmer, T.D. & Kempermann, G. Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons. PLoS ONE 2, e388 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Palmer, T.D., Ray, J. & Gage, F.H. FGF-2–responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell. Neurosci. 6, 474–486 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Merkle, F.T., Mirzadeh, Z. & Alvarez-Buylla, A. Mosaic organization of neural stem cells in the adult brain. Science 317, 381–384 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Pitt, D., Werner, P. & Raine, C.S. Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med. 6, 67–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Sperk, G. et al. Kainic acid–induced seizures: neurochemical and histopathological changes. Neuroscience 10, 1301–1315 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Back, S.A. et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J. Neurosci. 22, 455–463 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao, C., Teng, E.M., Summers, R.G. Jr, Ming, G.L. & Gage, F.H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lie, D.C. et al. Wnt signaling regulates adult hippocampal neurogenesis. Nature 437, 1370–1375 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Lein, E.S., Zhao, X. & Gage, F.H. Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J. Neurosci. 24, 3879–3889 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsieh, J. et al. IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J. Cell Biol. 164, 111–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M.L. Gage for editing the manuscript. The study was supported by grants from the Deutsche Forschungsgemeinschaft (Je297/1-1), American Epilepsy Society, Swiss National Science Foundation (to S.J.), and the US National Institute on Aging, the US National Institute of Neurological Disorders and Stroke, the Lookout Fund, the Christopher and Dana Reeve Foundation, the Picower Foundation and Project ALS (to F.H.G.).

Author information

Authors and Affiliations

Authors

Contributions

S.J. conceived and carried out the experiments, analyzed the data and wrote the manuscript. N.T. performed the electron microscopy experiment. G.D.C. participated in viral injections and histological procedures. J.R. provided the stem cell cultures. F.H.G. revised the manuscript, gave conceptual input and obtained financial support.

Corresponding authors

Correspondence to Sebastian Jessberger or Fred H Gage.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 2235 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jessberger, S., Toni, N., Clemenson Jr, G. et al. Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nat Neurosci 11, 888–893 (2008). https://doi.org/10.1038/nn.2148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing