Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Single-cell genomics

Subjects

Abstract

Methods for genomic analysis at single-cell resolution enable new understanding of complex biological phenomena. Single-cell techniques, ranging from flow cytometry and microfluidics to PCR and sequencing, are used to understand the cellular composition of complex tissues, find new microbial species and perform genome-wide haplotyping.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-throughput single-cell gene expression using microfluidic chips for studying the cellular hierarchy of solid tissues and tumors.
Figure 2: Single-cell genome sequencing using microfluidics.

References

  1. Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A. & Tyagi, S. Nat. Methods 5, 877–879 (2008).

    Article  CAS  Google Scholar 

  2. Taniguchi, Y. et al. Science 329, 533–538 (2010).

    Article  CAS  Google Scholar 

  3. Tietjen, I. et al. Neuron 38, 161–175 (2003).

    Article  CAS  Google Scholar 

  4. Eberwine, J. et al. Proc. Natl. Acad. Sci. USA 89, 3010–3014 (1992).

    Article  CAS  Google Scholar 

  5. Shapiro, H.M. Practical flow cytometry 4th edn. (Wiley-Liss, New York, 2003).

    Book  Google Scholar 

  6. Irish, J.M. et al. Cell 118, 217–228 (2004).

    Article  CAS  Google Scholar 

  7. Bandura, D.R. et al. Anal. Chem. 81, 6813–6822 (2009).

    Article  CAS  Google Scholar 

  8. Elowitz, M.B., Levine, A.J., Siggia, E.D. & Swain, P.S. Science 297, 1183–1186 (2002).

    Article  CAS  Google Scholar 

  9. Tay, S. et al. Nature 466, 267–271 (2010).

    Article  CAS  Google Scholar 

  10. Li, H.H. et al. Nature 335, 414–417 (1988).

    Article  CAS  Google Scholar 

  11. Maryanski, J.L., Jongeneel, C.V., Bucher, P., Casanova, J.L. & Walker, P.R. Immunity 4, 47–55 (1996).

    Article  CAS  Google Scholar 

  12. Lambolez, B., Audinat, E., Bochet, P., Crepel, F. & Rossier, J. Neuron 9, 247–258 (1992).

    Article  CAS  Google Scholar 

  13. Bengtsson, M., Stahlberg, A., Rorsman, P. & Kubista, M. Genome Res. 15, 1388–1392 (2005).

    Article  CAS  Google Scholar 

  14. Tang, F. et al. Nat. Protoc. 1, 1154–1159 (2006).

    Article  CAS  Google Scholar 

  15. Liu, J., Hansen, C. & Quake, S.R. Anal. Chem. 75, 4718–4723 (2003).

    Article  CAS  Google Scholar 

  16. Guo, G. et al. Dev. Cell 18, 675–685 (2010).

    Article  CAS  Google Scholar 

  17. Diehn, M. et al. Nature 458, 780–783 (2009).

    Article  CAS  Google Scholar 

  18. Sykes, P.J. et al. Biotechniques 13, 444–449 (1992).

    CAS  PubMed  Google Scholar 

  19. Warren, L., Bryder, D., Weissman, I.L. & Quake, S.R. Proc. Natl. Acad. Sci. USA 103, 17807–17812 (2006).

    Article  CAS  Google Scholar 

  20. Chiang, M.K. & Melton, D.A. Dev. Cell 4, 383–393 (2003).

    Article  CAS  Google Scholar 

  21. Luo, L. et al. Nat. Med. 5, 117–122 (1999).

    Article  CAS  Google Scholar 

  22. Tang, F. et al. Nat. Methods 6, 377–382 (2009).

    Article  CAS  Google Scholar 

  23. Ottesen, E.A., Hong, J.W., Quake, S.R. & Leadbetter, J.R. Science 314, 1464–1467 (2006).

    Article  CAS  Google Scholar 

  24. Tadmor, A.D., Ottesen, E.A., Leadbetter, J.R. & Phillips, R. Science (in the press).

  25. Dean, F.B., Nelson, J.R., Giesler, T.L. & Lasken, R.S. Genome Res. 11, 1095–1099 (2001).

    Article  CAS  Google Scholar 

  26. Zhang, K. et al. Nat. Biotechnol. 24, 680–686 (2006).

    Article  CAS  Google Scholar 

  27. Blainey, P.C. & Quake, S.R. Nucleic Acids Res. 39, e19 (2011).

    Article  Google Scholar 

  28. Marcy, Y. et al. Proc. Natl. Acad. Sci. USA 104, 11889–11894 (2007).

    Article  CAS  Google Scholar 

  29. Woyke, T. et al. PLoS ONE 4, e5299 (2009).

    Article  Google Scholar 

  30. Woyke, T. et al. PLoS ONE 5, e10314 (2010).

    Article  Google Scholar 

  31. Blainey, P.C., Mosier, A.C., Potanina, A., Francis, C.A. & Quake, S.R. PLoS ONE 6, e16626 (2011).

    Article  CAS  Google Scholar 

  32. Rodrigue, S. et al. PLoS ONE 4, e6864 (2009).

    Article  Google Scholar 

  33. Frumkin, D. et al. Cancer Res. 68, 5924–5931 (2008).

    Article  CAS  Google Scholar 

  34. Fan, H.C., Wang, J., Potanina, A. & Quake, S.R. Nat. Biotechnol. 29, 51–57 (2011).

    Article  CAS  Google Scholar 

  35. Leslie, M. Science 331, 24–26 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Dalerba, M. Rothenberg and M. Clarke for providing the tissue section and FACS plot images for Figure 1, and P. Blainey for preparing Figure 2 and for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R Quake.

Ethics declarations

Competing interests

S.R.Q. is a founder, consultant and shareholder of Fluidigm corp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalisky, T., Quake, S. Single-cell genomics. Nat Methods 8, 311–314 (2011). https://doi.org/10.1038/nmeth0411-311

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth0411-311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing